lncRNA-056298 Regulates GAP43 and Promotes Cardiac Intrinsic Autonomic Nerve Remodelling in a Canine Model of Atrial Fibrillation Induction after Ganglionated Plexus Ablation.

IF 3.5 4区 医学 Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Current medicinal chemistry Pub Date : 2025-01-01 DOI:10.2174/0109298673289298240129103537
Shuting Bai, Ximin Wang, Yinglong Hou, Yansong Cui, Qiyuan Song, Juanjuan Du, Yujiao Zhang, Jingwen Xu
{"title":"lncRNA-056298 Regulates GAP43 and Promotes Cardiac Intrinsic Autonomic Nerve Remodelling in a Canine Model of Atrial Fibrillation Induction after Ganglionated Plexus Ablation.","authors":"Shuting Bai, Ximin Wang, Yinglong Hou, Yansong Cui, Qiyuan Song, Juanjuan Du, Yujiao Zhang, Jingwen Xu","doi":"10.2174/0109298673289298240129103537","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Cardiac intrinsic autonomic nerve remodelling has been reported to play an important role in the recurrence of atrial fibrillation after radiofrequency ablation, which significantly affects the long-term efficacy of this procedure. lncRNAs have been shown to interact in the pathological processes underlying heart diseases. However, the roles and mechanisms of lncRNAs in cardiac intrinsic autonomic nerve remodelling during atrial fibrillation reduction after ganglionated plexus ablation remain unknown.</p><p><strong>Objective: </strong>The aim of this study was to investigate the mechanism by which lncRNA- 056298 modulates GAP43 to affect cardiac intrinsic autonomic nerve remodelling and facilitate the induction of atrial fibrillation after ganglionated plexus ablation.</p><p><strong>Methods: </strong>A canine model of right atrial ganglionated plexus ablation was established. The atrial electrophysiological characteristics and neural markers were detected before and after 6 months of ganglionated plexus ablation. High-throughput sequencing was used to screen differentially expressed lncRNAs in target atrial tissues, and lncRNA- 056298 was selected to further explore its effects and mechanisms on cardiac intrinsic autonomic nerve remodelling.</p><p><strong>Results: </strong>The induction rate of atrial fibrillation increased in dogs after ganglionated plexus ablation. Overexpression of lncRNA-056298 by lentivirus can shorten the atrial effective refractory period and increase the induction of atrial fibrillation. lncRNA- 056298 promoted cardiac intrinsic autonomic nerve remodelling via endogenous competition with cfa-miR-185 to induce transcription of its target gene GAP43, thereby affecting the induction of atrial fibrillation.</p><p><strong>Conclusion: </strong>lncRNA-056298 regulates GAP43 by sponging miR-185, which affects cardiac intrinsic autonomic nerve remodelling and mediates atrial fibrillation induction after ganglionated plexus ablation.</p>","PeriodicalId":10984,"journal":{"name":"Current medicinal chemistry","volume":" ","pages":"136-159"},"PeriodicalIF":3.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0109298673289298240129103537","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Cardiac intrinsic autonomic nerve remodelling has been reported to play an important role in the recurrence of atrial fibrillation after radiofrequency ablation, which significantly affects the long-term efficacy of this procedure. lncRNAs have been shown to interact in the pathological processes underlying heart diseases. However, the roles and mechanisms of lncRNAs in cardiac intrinsic autonomic nerve remodelling during atrial fibrillation reduction after ganglionated plexus ablation remain unknown.

Objective: The aim of this study was to investigate the mechanism by which lncRNA- 056298 modulates GAP43 to affect cardiac intrinsic autonomic nerve remodelling and facilitate the induction of atrial fibrillation after ganglionated plexus ablation.

Methods: A canine model of right atrial ganglionated plexus ablation was established. The atrial electrophysiological characteristics and neural markers were detected before and after 6 months of ganglionated plexus ablation. High-throughput sequencing was used to screen differentially expressed lncRNAs in target atrial tissues, and lncRNA- 056298 was selected to further explore its effects and mechanisms on cardiac intrinsic autonomic nerve remodelling.

Results: The induction rate of atrial fibrillation increased in dogs after ganglionated plexus ablation. Overexpression of lncRNA-056298 by lentivirus can shorten the atrial effective refractory period and increase the induction of atrial fibrillation. lncRNA- 056298 promoted cardiac intrinsic autonomic nerve remodelling via endogenous competition with cfa-miR-185 to induce transcription of its target gene GAP43, thereby affecting the induction of atrial fibrillation.

Conclusion: lncRNA-056298 regulates GAP43 by sponging miR-185, which affects cardiac intrinsic autonomic nerve remodelling and mediates atrial fibrillation induction after ganglionated plexus ablation.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
lncRNA-056298在神经节丛消融后诱发心房颤动的犬模型中调控GAP43并促进心脏内在自主神经重塑
背景:据报道,心脏固有自律神经重塑在射频消融术后心房颤动复发中起着重要作用,这严重影响了该手术的长期疗效。然而,lncRNAs在神经节丛消融术后心房颤动减弱过程中心脏固有自律神经重塑过程中的作用和机制仍然未知:本研究旨在探讨 lncRNA- 056298 调节 GAP43 影响心脏固有自律神经重塑并促进神经节丛消融术后房颤诱导的机制:方法:建立了右心房神经节丛消融的犬模型。方法:建立了一个犬右心房神经节丛消融模型,检测了神经节丛消融前后 6 个月的心房电生理特征和神经标记物。利用高通量测序技术筛选目标心房组织中差异表达的lncRNA,并选择lncRNA- 056298进一步探讨其对心脏固有自律神经重塑的影响和机制:结果:神经节丛消融术后,犬心房颤动的诱发率增加。lncRNA-056298通过内源性与cfa-miR-185竞争诱导其靶基因GAP43的转录,促进心脏固有自律神经重塑,从而影响心房颤动的诱发。结论:lncRNA-056298通过疏导miR-185调控GAP43,影响心脏固有自律神经重塑,介导神经节丛消融术后的心房颤动诱导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Current medicinal chemistry
Current medicinal chemistry 医学-生化与分子生物学
CiteScore
8.60
自引率
2.40%
发文量
468
审稿时长
3 months
期刊介绍: Aims & Scope Current Medicinal Chemistry covers all the latest and outstanding developments in medicinal chemistry and rational drug design. Each issue contains a series of timely in-depth reviews and guest edited thematic issues written by leaders in the field covering a range of the current topics in medicinal chemistry. The journal also publishes reviews on recent patents. Current Medicinal Chemistry is an essential journal for every medicinal chemist who wishes to be kept informed and up-to-date with the latest and most important developments.
期刊最新文献
Construction of a Subcutaneous Fat Transplantation Model Infected with Mycobacterium. Inhibition of Shiga Toxin 2 for E. coli O157 Control: An In-Silico Study on Natural and Synthetic Compounds. Synthesis, Anticancer Activity, and Mitochondria-targeted Bioimaging Applications of Novel Fluorescent Calix [4]arenes-benzimidazole Derivatives. Lysyl Oxidase as a Target to Reduce Graft Failure Post Solid Organ Transplantation, a Potential Target for Novel Treatment. Lipid Biochemistry and its Role in Human Diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1