Miranda Steeves, Diego Combita, William Whelan, Marya Ahmed
{"title":"Chemotherapeutics-Loaded Poly(Dopamine) Core-Shell Nanoparticles for Breast Cancer Treatment.","authors":"Miranda Steeves, Diego Combita, William Whelan, Marya Ahmed","doi":"10.1124/jpet.123.001965","DOIUrl":null,"url":null,"abstract":"<p><p>Chemophotothermal therapy is an emerging treatment of metastatic and drug-resistant cancer anomalies. Among various photothermal agents tested, poly(dopamine) provides an excellent biocompatible alternative that can be used to develop novel drug delivery carriers for cancer treatment. This study explores the synthesis of starch-encapsulated, poly(dopamine)-coated core-shell nanoparticles in a one-pot synthesis approach and by surfactant-free approach. The nanoparticles produced are embellished with polymeric stealth coatings and are tested for their physiologic stability, photothermal properties, and drug delivery in metastatic triple-negative breast cancer cell (TNBC) lines. Our results indicate that stealth polymer-coated nanoparticles exhibit superior colloidal stability under physiologic conditions, and are excellent photothermal agents, as determined by the increase in temperature of solution in the presence of nanoparticles, upon laser irradiation. The chemotherapeutic drug-loaded nanoparticles also showed concentration-dependent toxicities in TNBC and in a brain metastatic cell line. SIGNIFICANCE STATEMENT: This study develops, for the first time, biocompatible core-shell nanoparticles in a template-free approach that can serve as a drug delivery carrier and as photothermal agents for cancer treatment.</p>","PeriodicalId":16798,"journal":{"name":"Journal of Pharmacology and Experimental Therapeutics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacology and Experimental Therapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1124/jpet.123.001965","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Chemophotothermal therapy is an emerging treatment of metastatic and drug-resistant cancer anomalies. Among various photothermal agents tested, poly(dopamine) provides an excellent biocompatible alternative that can be used to develop novel drug delivery carriers for cancer treatment. This study explores the synthesis of starch-encapsulated, poly(dopamine)-coated core-shell nanoparticles in a one-pot synthesis approach and by surfactant-free approach. The nanoparticles produced are embellished with polymeric stealth coatings and are tested for their physiologic stability, photothermal properties, and drug delivery in metastatic triple-negative breast cancer cell (TNBC) lines. Our results indicate that stealth polymer-coated nanoparticles exhibit superior colloidal stability under physiologic conditions, and are excellent photothermal agents, as determined by the increase in temperature of solution in the presence of nanoparticles, upon laser irradiation. The chemotherapeutic drug-loaded nanoparticles also showed concentration-dependent toxicities in TNBC and in a brain metastatic cell line. SIGNIFICANCE STATEMENT: This study develops, for the first time, biocompatible core-shell nanoparticles in a template-free approach that can serve as a drug delivery carrier and as photothermal agents for cancer treatment.
期刊介绍:
A leading research journal in the field of pharmacology published since 1909, JPET provides broad coverage of all aspects of the interactions of chemicals with biological systems, including autonomic, behavioral, cardiovascular, cellular, clinical, developmental, gastrointestinal, immuno-, neuro-, pulmonary, and renal pharmacology, as well as analgesics, drug abuse, metabolism and disposition, chemotherapy, and toxicology.