Selection of a sustainable location for waste electrical and electronic equipment recycling plant using Entropy and Evaluation based on Distance from Average Solution.
{"title":"Selection of a sustainable location for waste electrical and electronic equipment recycling plant using Entropy and Evaluation based on Distance from Average Solution.","authors":"Ayça Maden","doi":"10.1177/0734242X231223903","DOIUrl":null,"url":null,"abstract":"<p><p>The production and consumption of electronic goods have experienced a significant increase over the years, leading to a substantial surge in the global volume of electronic waste, commonly referred to as Waste Electrical and Electronic Equipment (WEEE). The selection of a sustainable location for WEEE recycling plants plays a crucial role in mitigating environmental concerns, preserving resources and promoting economic development. It signifies a proactive and responsible approach to electronic waste management in the contemporary world. To tackle the challenge of selecting sustainable locations for WEEE recycling plants, this study employed the Entropy and Entropy and Evaluation based on Distance from Average Solution (EDAS) methodologies, evaluating 10 alternative cities in Turkey based on 13 criteria. The selected criteria include land cost, personnel cost, energy cost, availability of labour, government support degree, tax preferences, road network accessibility, number of electronic equipment producers, existence of recycling plants, suitability of land use, population and availability of renewable resources (wind power and solar energy). The Entropy method was employed to calculate the weights assigned to each criterion, whereas the EDAS method was utilized to evaluate the decision alternatives. The results provide region-specific recommendations, such as Antalya for the Mediterranean region and Samsun for the Black Sea region. The literature lacks sufficient research on the selection of sustainable locations for WEEE recycling plants. Furthermore, the utilization of real data enhances the study's credibility and provides practical insights for decision-making. The selection of a sustainable location for a WEEE recycling plant in Turkey not only demonstrates the country's environmental commitment but also sets a global example for responsible waste management.</p>","PeriodicalId":23671,"journal":{"name":"Waste Management & Research","volume":" ","pages":"1119-1130"},"PeriodicalIF":3.7000,"publicationDate":"2024-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management & Research","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1177/0734242X231223903","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/31 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
The production and consumption of electronic goods have experienced a significant increase over the years, leading to a substantial surge in the global volume of electronic waste, commonly referred to as Waste Electrical and Electronic Equipment (WEEE). The selection of a sustainable location for WEEE recycling plants plays a crucial role in mitigating environmental concerns, preserving resources and promoting economic development. It signifies a proactive and responsible approach to electronic waste management in the contemporary world. To tackle the challenge of selecting sustainable locations for WEEE recycling plants, this study employed the Entropy and Entropy and Evaluation based on Distance from Average Solution (EDAS) methodologies, evaluating 10 alternative cities in Turkey based on 13 criteria. The selected criteria include land cost, personnel cost, energy cost, availability of labour, government support degree, tax preferences, road network accessibility, number of electronic equipment producers, existence of recycling plants, suitability of land use, population and availability of renewable resources (wind power and solar energy). The Entropy method was employed to calculate the weights assigned to each criterion, whereas the EDAS method was utilized to evaluate the decision alternatives. The results provide region-specific recommendations, such as Antalya for the Mediterranean region and Samsun for the Black Sea region. The literature lacks sufficient research on the selection of sustainable locations for WEEE recycling plants. Furthermore, the utilization of real data enhances the study's credibility and provides practical insights for decision-making. The selection of a sustainable location for a WEEE recycling plant in Turkey not only demonstrates the country's environmental commitment but also sets a global example for responsible waste management.
期刊介绍:
Waste Management & Research (WM&R) publishes peer-reviewed articles relating to both the theory and practice of waste management and research. Published on behalf of the International Solid Waste Association (ISWA) topics include: wastes (focus on solids), processes and technologies, management systems and tools, and policy and regulatory frameworks, sustainable waste management designs, operations, policies or practices.