Krylov subspace methods for large multidimensional eigenvalue computation

IF 2.2 2区 数学 Q1 MATHEMATICS, APPLIED Applied Numerical Mathematics Pub Date : 2025-02-01 DOI:10.1016/j.apnum.2024.01.017
Anas El Hachimi , Khalide Jbilou , Ahmed Ratnani
{"title":"Krylov subspace methods for large multidimensional eigenvalue computation","authors":"Anas El Hachimi ,&nbsp;Khalide Jbilou ,&nbsp;Ahmed Ratnani","doi":"10.1016/j.apnum.2024.01.017","DOIUrl":null,"url":null,"abstract":"<div><div><span>In this paper, we describe some Krylov subspace methods for computing eigentubes and </span>eigenvectors (eigenslices) for large and sparse third-order tensors. This work provides projection methods for computing some of the largest (or smallest) eigentubes and eigenslices using the t-product. In particular, we use the tensor Arnoldi's approach for the non-hermitian case and the tensor Lanczos's approach for f-hermitian tensors. We also use the tensor block Arnoldi method to approximate the extreme eigentubes of a large tensor. Computed examples are given to illustrate the effectiveness of these methods.</div></div>","PeriodicalId":8199,"journal":{"name":"Applied Numerical Mathematics","volume":"208 ","pages":"Pages 205-221"},"PeriodicalIF":2.2000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Numerical Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168927424000175","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper, we describe some Krylov subspace methods for computing eigentubes and eigenvectors (eigenslices) for large and sparse third-order tensors. This work provides projection methods for computing some of the largest (or smallest) eigentubes and eigenslices using the t-product. In particular, we use the tensor Arnoldi's approach for the non-hermitian case and the tensor Lanczos's approach for f-hermitian tensors. We also use the tensor block Arnoldi method to approximate the extreme eigentubes of a large tensor. Computed examples are given to illustrate the effectiveness of these methods.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于大型多维特征值计算的克雷洛夫子空间方法
本文介绍了一些计算大型稀疏三阶张量的特征管和特征向量(特征切片)的 Krylov 子空间方法。这项工作提供了使用 t-乘积计算一些最大(或最小)特征管和特征切片的投影方法。特别是,我们在非全米情况下使用了张量阿诺迪方法,在 f 全米张量情况下使用了张量兰克佐斯方法。我们还使用张量块阿诺迪方法来逼近大型张量的极值。我们给出了一些计算实例来说明这些方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Applied Numerical Mathematics
Applied Numerical Mathematics 数学-应用数学
CiteScore
5.60
自引率
7.10%
发文量
225
审稿时长
7.2 months
期刊介绍: The purpose of the journal is to provide a forum for the publication of high quality research and tutorial papers in computational mathematics. In addition to the traditional issues and problems in numerical analysis, the journal also publishes papers describing relevant applications in such fields as physics, fluid dynamics, engineering and other branches of applied science with a computational mathematics component. The journal strives to be flexible in the type of papers it publishes and their format. Equally desirable are: (i) Full papers, which should be complete and relatively self-contained original contributions with an introduction that can be understood by the broad computational mathematics community. Both rigorous and heuristic styles are acceptable. Of particular interest are papers about new areas of research, in which other than strictly mathematical arguments may be important in establishing a basis for further developments. (ii) Tutorial review papers, covering some of the important issues in Numerical Mathematics, Scientific Computing and their Applications. The journal will occasionally publish contributions which are larger than the usual format for regular papers. (iii) Short notes, which present specific new results and techniques in a brief communication.
期刊最新文献
Orthogonal wavelet method for multi-stage expansion and contraction options under stochastic volatility Finite element error estimation for parabolic optimal control problems with time delay Editorial Board Editorial Board Orthogonal designs for computer experiments constructed from sequences with zero autocorrelation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1