{"title":"Analytical solution for the free transverse vibration of an elastically connected annular plate system with discontinuities","authors":"Junling Fan , Yupeng Wang , Yongbin Ma","doi":"10.1016/j.mechrescom.2024.104254","DOIUrl":null,"url":null,"abstract":"<div><p>Due to the performance requirements, structural discontinuities are inevitable in engineering structures. Free vibration of an elastically connected annular plate system with discontinuities has not yet been reported in the literature. In this study, an analytical method is developed for the free vibration of an annular plate system with discontinuities along its radius. The annular plates are connected continuously using an elastic layer. The coupled vibration equations of the annular plate system were decoupled into a series of uncoupled general “vibration” equations which are then transferred into a symplectic dual system. The general “vibration” state can then be analytically described in terms of waves utilizing the elastic wave theory. Using the analytical wave modes and satisfying the compatibility and boundary conditions at the discontinuities, a frequency equation can be obtained analytically. In numerical examples, the free vibrations of systems consist of two and three annular plates were investigated. The accuracy of the proposed method is verified by comparison with literature and finite element method (FEM).</p></div>","PeriodicalId":49846,"journal":{"name":"Mechanics Research Communications","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanics Research Communications","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0093641324000120","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the performance requirements, structural discontinuities are inevitable in engineering structures. Free vibration of an elastically connected annular plate system with discontinuities has not yet been reported in the literature. In this study, an analytical method is developed for the free vibration of an annular plate system with discontinuities along its radius. The annular plates are connected continuously using an elastic layer. The coupled vibration equations of the annular plate system were decoupled into a series of uncoupled general “vibration” equations which are then transferred into a symplectic dual system. The general “vibration” state can then be analytically described in terms of waves utilizing the elastic wave theory. Using the analytical wave modes and satisfying the compatibility and boundary conditions at the discontinuities, a frequency equation can be obtained analytically. In numerical examples, the free vibrations of systems consist of two and three annular plates were investigated. The accuracy of the proposed method is verified by comparison with literature and finite element method (FEM).
期刊介绍:
Mechanics Research Communications publishes, as rapidly as possible, peer-reviewed manuscripts of high standards but restricted length. It aims to provide:
• a fast means of communication
• an exchange of ideas among workers in mechanics
• an effective method of bringing new results quickly to the public
• an informal vehicle for the discussion
• of ideas that may still be in the formative stages
The field of Mechanics will be understood to encompass the behavior of continua, fluids, solids, particles and their mixtures. Submissions must contain a strong, novel contribution to the field of mechanics, and ideally should be focused on current issues in the field involving theoretical, experimental and/or applied research, preferably within the broad expertise encompassed by the Board of Associate Editors. Deviations from these areas should be discussed in advance with the Editor-in-Chief.