Preliminary identification and semi-quantitative characterization of a multi-faceted high-stability alginate lyase from marine microbe Seonamhaeicola algicola with anti-biofilm effect on Pseudomonas aeruginosa
{"title":"Preliminary identification and semi-quantitative characterization of a multi-faceted high-stability alginate lyase from marine microbe Seonamhaeicola algicola with anti-biofilm effect on Pseudomonas aeruginosa","authors":"Shuaiting Yun, Jinping Huang, Mingjing Zhang, Xueting Wang, Xiaochen Wang, Yanxia Zhou","doi":"10.1016/j.enzmictec.2024.110408","DOIUrl":null,"url":null,"abstract":"<div><p><span>Alginate<span><span> lyases with unique characteristics for degrading alginate into size-defined </span>oligosaccharide fractions, were considered as the potential agents for disrupting </span></span><span><em>Pseudomonas aeruginosa</em></span> biofilms. In our study, a novel endolytic PL-7 alginate lyase, named AlyG2, was cloned and expressed through <em>Escherichia coli</em><span>. This enzyme exhibited excellent properties: it maintained more than 85% activity at low temperatures of 4 °C and high temperatures of 70 °C. After 1 h of incubation at 4 °C, it still retained over 95% activity, demonstrating the ability to withstand low temperature. The acid-base and salt tolerance properties shown it preserves more than 50% activity in the pH range of 5.0 to 11.0 and in a high salt environment at 3000 mM NacCl, indicating its high stability in several aspects. More importantly, AlyG2 in our research was revealed to be effective at removing mature biofilms and inhibiting biofilm formation produced by </span><em>Pseudomonas aeruginosa</em>, and the inhibition and disruption rates were 47.25 ± 4.52% and 26.5 ± 6.72%, respectively. Additionally, the enzyme AlyG2 promoted biofilm disruption in combination with antibiotics, particularly manifesting the synergistic effect with erythromycin (FIC=0.5). In all, these results offered that AlyG2 with unique characteristics may be an effective technique for the clearance or disruption of biofilm produced by <em>P. aeruginosa</em>.</p></div>","PeriodicalId":11770,"journal":{"name":"Enzyme and Microbial Technology","volume":"175 ","pages":"Article 110408"},"PeriodicalIF":3.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Enzyme and Microbial Technology","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141022924000152","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Alginate lyases with unique characteristics for degrading alginate into size-defined oligosaccharide fractions, were considered as the potential agents for disrupting Pseudomonas aeruginosa biofilms. In our study, a novel endolytic PL-7 alginate lyase, named AlyG2, was cloned and expressed through Escherichia coli. This enzyme exhibited excellent properties: it maintained more than 85% activity at low temperatures of 4 °C and high temperatures of 70 °C. After 1 h of incubation at 4 °C, it still retained over 95% activity, demonstrating the ability to withstand low temperature. The acid-base and salt tolerance properties shown it preserves more than 50% activity in the pH range of 5.0 to 11.0 and in a high salt environment at 3000 mM NacCl, indicating its high stability in several aspects. More importantly, AlyG2 in our research was revealed to be effective at removing mature biofilms and inhibiting biofilm formation produced by Pseudomonas aeruginosa, and the inhibition and disruption rates were 47.25 ± 4.52% and 26.5 ± 6.72%, respectively. Additionally, the enzyme AlyG2 promoted biofilm disruption in combination with antibiotics, particularly manifesting the synergistic effect with erythromycin (FIC=0.5). In all, these results offered that AlyG2 with unique characteristics may be an effective technique for the clearance or disruption of biofilm produced by P. aeruginosa.
期刊介绍:
Enzyme and Microbial Technology is an international, peer-reviewed journal publishing original research and reviews, of biotechnological significance and novelty, on basic and applied aspects of the science and technology of processes involving the use of enzymes, micro-organisms, animal cells and plant cells.
We especially encourage submissions on:
Biocatalysis and the use of Directed Evolution in Synthetic Biology and Biotechnology
Biotechnological Production of New Bioactive Molecules, Biomaterials, Biopharmaceuticals, and Biofuels
New Imaging Techniques and Biosensors, especially as applicable to Healthcare and Systems Biology
New Biotechnological Approaches in Genomics, Proteomics and Metabolomics
Metabolic Engineering, Biomolecular Engineering and Nanobiotechnology
Manuscripts which report isolation, purification, immobilization or utilization of organisms or enzymes which are already well-described in the literature are not suitable for publication in EMT, unless their primary purpose is to report significant new findings or approaches which are of broad biotechnological importance. Similarly, manuscripts which report optimization studies on well-established processes are inappropriate. EMT does not accept papers dealing with mathematical modeling unless they report significant, new experimental data.