{"title":"Gender equity in physics labs","authors":"Danny Doucette, Chandralekha Singh","doi":"10.1103/physrevphyseducres.20.010102","DOIUrl":null,"url":null,"abstract":"[This paper is part of the Focused Collection on Instructional labs: Improving traditions and new directions.] This review article provides an overview of research on the topic of gender equity in educational physics labs. As many institutions and instructors seek to evolve or transform physics lab learning, it is important that changes are made that improve equity for all students along multiple axes of identity, including gender. The studies highlighted in this review article describe the existence of complex gender-based differences, e.g., in opportunities to tinker with lab equipment, as well as differences in grades, conceptual understanding, and motivational outcomes across a broad range of lab curricula and contexts. The studies also illustrate and explore social interactions and structures that can impact students’ experiences based on their gender identities. Although there has been less scholarship focused on proposals to reduce gender-based inequities in labs, this review article also provides an overview of some relevant proposals as well as associated research results. This overview of research on gender equity in physics labs helps to make clear that future scholarship on equity in physics labs should adopt gender frameworks that allow researchers to transcend binary gender identities and student deficit framing of research results. Likewise, a case is made that future research is needed on equity along other axes of identity, as well as research that accounts for the intersectionality of different identities, in the physics lab context.","PeriodicalId":54296,"journal":{"name":"Physical Review Physics Education Research","volume":"48 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review Physics Education Research","FirstCategoryId":"95","ListUrlMain":"https://doi.org/10.1103/physrevphyseducres.20.010102","RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"EDUCATION & EDUCATIONAL RESEARCH","Score":null,"Total":0}
引用次数: 0
Abstract
[This paper is part of the Focused Collection on Instructional labs: Improving traditions and new directions.] This review article provides an overview of research on the topic of gender equity in educational physics labs. As many institutions and instructors seek to evolve or transform physics lab learning, it is important that changes are made that improve equity for all students along multiple axes of identity, including gender. The studies highlighted in this review article describe the existence of complex gender-based differences, e.g., in opportunities to tinker with lab equipment, as well as differences in grades, conceptual understanding, and motivational outcomes across a broad range of lab curricula and contexts. The studies also illustrate and explore social interactions and structures that can impact students’ experiences based on their gender identities. Although there has been less scholarship focused on proposals to reduce gender-based inequities in labs, this review article also provides an overview of some relevant proposals as well as associated research results. This overview of research on gender equity in physics labs helps to make clear that future scholarship on equity in physics labs should adopt gender frameworks that allow researchers to transcend binary gender identities and student deficit framing of research results. Likewise, a case is made that future research is needed on equity along other axes of identity, as well as research that accounts for the intersectionality of different identities, in the physics lab context.
期刊介绍:
PRPER covers all educational levels, from elementary through graduate education. All topics in experimental and theoretical physics education research are accepted, including, but not limited to:
Educational policy
Instructional strategies, and materials development
Research methodology
Epistemology, attitudes, and beliefs
Learning environment
Scientific reasoning and problem solving
Diversity and inclusion
Learning theory
Student participation
Faculty and teacher professional development