A random projection method for large-scale community detection

IF 0.3 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Statistics and Its Interface Pub Date : 2024-02-01 DOI:10.4310/22-sii752
Haobo Qi, Hansheng Wang, Xuening Zhu
{"title":"A random projection method for large-scale community detection","authors":"Haobo Qi, Hansheng Wang, Xuening Zhu","doi":"10.4310/22-sii752","DOIUrl":null,"url":null,"abstract":"In this work, we consider a random projection method for a large-scale community detection task. We introduce a random Gaussian matrix that generates several projections on the column space of the network adjacency matrix. The $k$-means algorithm is then applied with the low-dimensional projected matrix. The computational complexity is much lower than that of the classic spectral clustering methods. Furthermore, the algorithm is easy to implement and accessible for privacy preservation. We can theoretically establish a strong consistency result of the algorithm under the stochastic block model. Extensive numerical studies are conducted to verify the theoretical findings and illustrate the usefulness of the proposed method.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"1 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/22-sii752","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we consider a random projection method for a large-scale community detection task. We introduce a random Gaussian matrix that generates several projections on the column space of the network adjacency matrix. The $k$-means algorithm is then applied with the low-dimensional projected matrix. The computational complexity is much lower than that of the classic spectral clustering methods. Furthermore, the algorithm is easy to implement and accessible for privacy preservation. We can theoretically establish a strong consistency result of the algorithm under the stochastic block model. Extensive numerical studies are conducted to verify the theoretical findings and illustrate the usefulness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模群落探测的随机投影法
在这项工作中,我们考虑采用随机投影法来完成大规模群落检测任务。我们引入了一个随机高斯矩阵,在网络邻接矩阵的列空间上生成多个投影。然后利用低维投影矩阵应用 $k$-means 算法。该算法的计算复杂度远远低于经典的谱聚类方法。此外,该算法易于实现,并能保护隐私。我们可以从理论上建立随机块模型下算法的强一致性结果。我们还进行了广泛的数值研究,以验证理论结论,并说明所提方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics and Its Interface
Statistics and Its Interface MATHEMATICAL & COMPUTATIONAL BIOLOGY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
0.90
自引率
12.50%
发文量
45
审稿时长
6 months
期刊介绍: Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.
期刊最新文献
Estimating extreme value index by subsampling for massive datasets with heavy-tailed distributions Default Bayesian testing for the zero-inflated Poisson distribution A consistent specification test for functional linear quantile regression models Variable selection and estimation for high-dimensional partially linear spatial autoregressive models with measurement errors A double regression method for graphical modeling of high-dimensional nonlinear and non-Gaussian data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1