Community detection in temporal citation network via a tensor-based approach

IF 0.3 4区 数学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Statistics and Its Interface Pub Date : 2024-02-01 DOI:10.4310/22-sii751
Tianchen Gao, Rui Pan, Junfei Zhang, Hansheng Wang
{"title":"Community detection in temporal citation network via a tensor-based approach","authors":"Tianchen Gao, Rui Pan, Junfei Zhang, Hansheng Wang","doi":"10.4310/22-sii751","DOIUrl":null,"url":null,"abstract":"In the era of big data, network analysis has attracted widespread attention. Detecting and tracking community evolution in temporal networks can uncover important and interesting behaviors. In this paper, we analyze a temporal citation network constructed by publications collected from 44 statistical journals between 2001 and 2018. We propose an approach named Tensor-based Directed Spectral Clustering On Ratios of Eigenvectors (TD-SCORE) which can correct for degree heterogeneity to detect the community structure of the temporal citation network. We first explore the characteristics of the temporal network via in-degree distribution and visualization of different snapshots, and we find that both the community structure and the key nodes change over time. Then, we apply the TD-SCORE method to the core network of our temporal citation network. Seven communities are identified, including variable selection, Bayesian analysis, functional data analysis, and many others. Finally, we track the evolution of the above communities and reach some conclusions.","PeriodicalId":51230,"journal":{"name":"Statistics and Its Interface","volume":"26 1","pages":""},"PeriodicalIF":0.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistics and Its Interface","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.4310/22-sii751","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

In the era of big data, network analysis has attracted widespread attention. Detecting and tracking community evolution in temporal networks can uncover important and interesting behaviors. In this paper, we analyze a temporal citation network constructed by publications collected from 44 statistical journals between 2001 and 2018. We propose an approach named Tensor-based Directed Spectral Clustering On Ratios of Eigenvectors (TD-SCORE) which can correct for degree heterogeneity to detect the community structure of the temporal citation network. We first explore the characteristics of the temporal network via in-degree distribution and visualization of different snapshots, and we find that both the community structure and the key nodes change over time. Then, we apply the TD-SCORE method to the core network of our temporal citation network. Seven communities are identified, including variable selection, Bayesian analysis, functional data analysis, and many others. Finally, we track the evolution of the above communities and reach some conclusions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于张量的时态引文网络社群检测方法
在大数据时代,网络分析受到广泛关注。检测和跟踪时态网络中的社群演化可以发现重要而有趣的行为。在本文中,我们分析了由 2001 年至 2018 年间从 44 种统计期刊中收集的出版物构建的时态引文网络。我们提出了一种名为 "基于特征向量比的张量定向谱聚类(TD-SCORE)"的方法,该方法可以校正度异质性,从而检测时空引文网络的群落结构。我们首先通过内度分布和不同快照的可视化来探索时空网络的特征,发现群落结构和关键节点都会随时间发生变化。然后,我们将 TD-SCORE 方法应用于时空引文网络的核心网络。我们发现了七个社群,包括变量选择、贝叶斯分析、功能数据分析等。最后,我们跟踪了上述群体的演变,并得出了一些结论。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Statistics and Its Interface
Statistics and Its Interface MATHEMATICAL & COMPUTATIONAL BIOLOGY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
0.90
自引率
12.50%
发文量
45
审稿时长
6 months
期刊介绍: Exploring the interface between the field of statistics and other disciplines, including but not limited to: biomedical sciences, geosciences, computer sciences, engineering, and social and behavioral sciences. Publishes high-quality articles in broad areas of statistical science, emphasizing substantive problems, sound statistical models and methods, clear and efficient computational algorithms, and insightful discussions of the motivating problems.
期刊最新文献
Estimating extreme value index by subsampling for massive datasets with heavy-tailed distributions Default Bayesian testing for the zero-inflated Poisson distribution A consistent specification test for functional linear quantile regression models Variable selection and estimation for high-dimensional partially linear spatial autoregressive models with measurement errors A double regression method for graphical modeling of high-dimensional nonlinear and non-Gaussian data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1