High temperature spin selectivity in a quantum dot qubit using reservoir spin accumulation

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED npj Quantum Information Pub Date : 2024-02-03 DOI:10.1038/s41534-024-00815-y
R. Jansen, S. Yuasa
{"title":"High temperature spin selectivity in a quantum dot qubit using reservoir spin accumulation","authors":"R. Jansen, S. Yuasa","doi":"10.1038/s41534-024-00815-y","DOIUrl":null,"url":null,"abstract":"<p>Employing spins in quantum dots for fault-tolerant quantum computing in large-scale qubit arrays with on-chip control electronics requires high-fidelity qubit operation at elevated temperature. This poses a challenge for single spin initialization and readout. Existing schemes rely on Zeeman splitting or Pauli spin blockade with typical energy scales of 0.1 or 1 meV for electron-based qubits, so that sufficient fidelity is obtained only at temperatures around or below 0.1 or 1 K, respectively. Here we describe a method to achieve high temperature spin selectivity in a quantum dot using a reservoir with a spin accumulation, which deterministically sets the spin of a single electron on the dot. Since spin accumulation as large as 10 meV is achievable in silicon, spin selection with electrically adjustable error rates below 10<sup>−4</sup> is possible even in a liquid He bath at 4 K. Via the reservoir spin accumulation, induced and controlled by a nearby ferromagnet, classical information (magnetization direction) is mapped onto a spin qubit. These features provide the prospect of spin qubit operation at elevated temperatures and connect the worlds of quantum computing and spintronics.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"5 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-024-00815-y","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Employing spins in quantum dots for fault-tolerant quantum computing in large-scale qubit arrays with on-chip control electronics requires high-fidelity qubit operation at elevated temperature. This poses a challenge for single spin initialization and readout. Existing schemes rely on Zeeman splitting or Pauli spin blockade with typical energy scales of 0.1 or 1 meV for electron-based qubits, so that sufficient fidelity is obtained only at temperatures around or below 0.1 or 1 K, respectively. Here we describe a method to achieve high temperature spin selectivity in a quantum dot using a reservoir with a spin accumulation, which deterministically sets the spin of a single electron on the dot. Since spin accumulation as large as 10 meV is achievable in silicon, spin selection with electrically adjustable error rates below 10−4 is possible even in a liquid He bath at 4 K. Via the reservoir spin accumulation, induced and controlled by a nearby ferromagnet, classical information (magnetization direction) is mapped onto a spin qubit. These features provide the prospect of spin qubit operation at elevated temperatures and connect the worlds of quantum computing and spintronics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用储层自旋积累实现量子点量子比特的高温自旋选择性
利用量子点中的自旋在大规模量子比特阵列中进行容错量子计算,需要在高温下进行高保真量子比特操作。这给单自旋初始化和读出带来了挑战。现有方案依赖于泽曼分裂或保利自旋封锁,电子基量子比特的典型能量尺度为 0.1 或 1 meV,因此只有在 0.1 或 1 K 左右的温度下才能获得足够的保真度。在这里,我们描述了一种在量子点中实现高温自旋选择性的方法,该方法使用带有自旋累积的储层,可确定性地设置量子点上单个电子的自旋。由于在硅中可以实现高达 10 meV 的自旋累积,因此即使在 4 K 的液氦浴中也可以实现误差率低于 10-4 的电可调自旋选择。通过附近铁磁体诱导和控制的储层自旋积累,经典信息(磁化方向)被映射到自旋量子比特上。这些特点为自旋量子比特在高温下运行提供了前景,并将量子计算和自旋电子学联系在一起。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
期刊最新文献
Many-body entanglement via ‘which-path’ information Hardware-tailored diagonalization circuits Optical and spin coherence of Er spin qubits in epitaxial cerium dioxide on silicon Local testability of distance-balanced quantum codes End-to-end variational quantum sensing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1