{"title":"Back analysis of cohesion and friction angle of failed slopes using probabilistic approach: two case studies","authors":"Reza Nassirzadeh, Abdollah Dini, Vahid Balagar","doi":"10.1186/s40703-024-00205-5","DOIUrl":null,"url":null,"abstract":"<p>In general, geotechnical investigations deal with the back analysis of the geotechnical parameters on the basis of the field observation. According to the back analysis method introduced in the present study, geometry of a number of failed slopes have been carefully mapped and then statistical features of the groundwater level, the bulk unit weight and other measurable parameters have been determined. After that, a series of two-dimensional models for back analysis of the failures have been established. Moreover, statistical analyses based on probabilistic approaches have been utilized to estimate the variation ranges of the shear strength variables. The study provided the probabilistic back analysis of the slope failure with the two case studies in the copper mines of Anjerd and Daraloo. Results indicated that the approach to the probabilistic back analysis has been effective in the analysis of the slope failures wherein considerable uncertainty has been observed in the shear strength and other influential variables. Furthermore, the probabilistic back analysis presented a lot of information in comparison to the approach to the deterministic back analysis and thus had more reasonable matching with the practice of geotechnical engineering in the real world. Therefore, this method would be beneficial and practical for stability analysis, redesigning the slopes, designing the new slopes under the same geotechnical conditions and promote the construction safety. The probabilistic back analysis could be also used to estimate the shear parameters and analyze the stability of slopes as a cost-effective and high reliability method.</p>","PeriodicalId":44851,"journal":{"name":"International Journal of Geo-Engineering","volume":"509 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Geo-Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40703-024-00205-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In general, geotechnical investigations deal with the back analysis of the geotechnical parameters on the basis of the field observation. According to the back analysis method introduced in the present study, geometry of a number of failed slopes have been carefully mapped and then statistical features of the groundwater level, the bulk unit weight and other measurable parameters have been determined. After that, a series of two-dimensional models for back analysis of the failures have been established. Moreover, statistical analyses based on probabilistic approaches have been utilized to estimate the variation ranges of the shear strength variables. The study provided the probabilistic back analysis of the slope failure with the two case studies in the copper mines of Anjerd and Daraloo. Results indicated that the approach to the probabilistic back analysis has been effective in the analysis of the slope failures wherein considerable uncertainty has been observed in the shear strength and other influential variables. Furthermore, the probabilistic back analysis presented a lot of information in comparison to the approach to the deterministic back analysis and thus had more reasonable matching with the practice of geotechnical engineering in the real world. Therefore, this method would be beneficial and practical for stability analysis, redesigning the slopes, designing the new slopes under the same geotechnical conditions and promote the construction safety. The probabilistic back analysis could be also used to estimate the shear parameters and analyze the stability of slopes as a cost-effective and high reliability method.