AiHui Feng , Ying Huang , Ya Zeng , Yan Shao , Hao Wang , Hua Chen , HengLe Gu , YanHua Duan , ZhenJiong Shen , ZhiYong Xu
{"title":"Improvement of Prediction Performance for Radiation Pneumonitis by Using 3-Dimensional Dosiomic Features","authors":"AiHui Feng , Ying Huang , Ya Zeng , Yan Shao , Hao Wang , Hua Chen , HengLe Gu , YanHua Duan , ZhenJiong Shen , ZhiYong Xu","doi":"10.1016/j.cllc.2024.01.006","DOIUrl":null,"url":null,"abstract":"<div><h3>Introduction</h3><p>Patients with early non-small-cell lung cancer (NSCLC) have a relatively long survival time after stereotactic body radiation therapy (SBRT). Predicting radiation-induced pneumonia (RP) has important clinical and social implications for improving the quality of life of such patients. This study developed an RP prediction model by using 3-dimensional (3D) dosiomic features. The model can be used to guide radiation therapy to reduce toxicity.</p></div><div><h3>Methods</h3><p>Radiomic features were extracted from pre-treatment CT, dose-volume histogram (DVH) parameters and dosiomic features were extracted from the 3D dose distribution of 140 lung cancer patients. Four predictive models: (1) CT; (2) CT + DVH; (3) CT + Rtdose; and (4) Hybrid, CT + DVH + Rtdose, were trained to predict symptomatic RP by extremely randomized trees. Accuracy, sensitivity, specificity, and area under the receiver operator characteristic curve were evaluated.</p></div><div><h3>Result</h3><p>Results showed that the fraction regimen was correlated with symptomatic RP (<em>P</em> < .001). The proposed model achieved promising prediction results. The performance metrics for CT, CT + DVH, CT + Rtdose, and Hybrid were as follows: accuracy: 0.786, 0.821, 0.821, and 0.857; sensitivity: 0.625, 1, 0.875, and 1; specificity: 0.8, 0.565, 0.5, and 0.875; and area under the receiver operator characteristic curve: 0.791, 0.809, 0.907, and 0.920, respectively.</p></div><div><h3>Conclusion</h3><p>Dosiomic features can improve the performance of the predictive model for symptomatic RP compared with that obtained with the CT + DVH model. The model proposed in this study can help radiation oncologists individually predict the incidence rate of RP.</p></div>","PeriodicalId":10490,"journal":{"name":"Clinical lung cancer","volume":"25 4","pages":"Pages e173-e180.e2"},"PeriodicalIF":3.3000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1525730424000081/pdfft?md5=471e17c482448b27d62c4a192932ecb8&pid=1-s2.0-S1525730424000081-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Clinical lung cancer","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1525730424000081","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction
Patients with early non-small-cell lung cancer (NSCLC) have a relatively long survival time after stereotactic body radiation therapy (SBRT). Predicting radiation-induced pneumonia (RP) has important clinical and social implications for improving the quality of life of such patients. This study developed an RP prediction model by using 3-dimensional (3D) dosiomic features. The model can be used to guide radiation therapy to reduce toxicity.
Methods
Radiomic features were extracted from pre-treatment CT, dose-volume histogram (DVH) parameters and dosiomic features were extracted from the 3D dose distribution of 140 lung cancer patients. Four predictive models: (1) CT; (2) CT + DVH; (3) CT + Rtdose; and (4) Hybrid, CT + DVH + Rtdose, were trained to predict symptomatic RP by extremely randomized trees. Accuracy, sensitivity, specificity, and area under the receiver operator characteristic curve were evaluated.
Result
Results showed that the fraction regimen was correlated with symptomatic RP (P < .001). The proposed model achieved promising prediction results. The performance metrics for CT, CT + DVH, CT + Rtdose, and Hybrid were as follows: accuracy: 0.786, 0.821, 0.821, and 0.857; sensitivity: 0.625, 1, 0.875, and 1; specificity: 0.8, 0.565, 0.5, and 0.875; and area under the receiver operator characteristic curve: 0.791, 0.809, 0.907, and 0.920, respectively.
Conclusion
Dosiomic features can improve the performance of the predictive model for symptomatic RP compared with that obtained with the CT + DVH model. The model proposed in this study can help radiation oncologists individually predict the incidence rate of RP.
期刊介绍:
Clinical Lung Cancer is a peer-reviewed bimonthly journal that publishes original articles describing various aspects of clinical and translational research of lung cancer. Clinical Lung Cancer is devoted to articles on detection, diagnosis, prevention, and treatment of lung cancer. The main emphasis is on recent scientific developments in all areas related to lung cancer. Specific areas of interest include clinical research and mechanistic approaches; drug sensitivity and resistance; gene and antisense therapy; pathology, markers, and prognostic indicators; chemoprevention strategies; multimodality therapy; and integration of various approaches.