Synthesis and Photocatalytic Activity of High-Quality Lead(II) Sulfide Nanoparticles from Lead(II) Thiosemicarbazone Complexes as Single Source Precursors
Adrien P. Yepseu, Thomas Girardet, Linda D. Nyamen, Solenne Fleutot, Kevin I. Y. Ketchemen, Walter N. Kun, Franck Cleymand, Peter T. Ndifon
{"title":"Synthesis and Photocatalytic Activity of High-Quality Lead(II) Sulfide Nanoparticles from Lead(II) Thiosemicarbazone Complexes as Single Source Precursors","authors":"Adrien P. Yepseu, Thomas Girardet, Linda D. Nyamen, Solenne Fleutot, Kevin I. Y. Ketchemen, Walter N. Kun, Franck Cleymand, Peter T. Ndifon","doi":"10.1155/2024/9932000","DOIUrl":null,"url":null,"abstract":"We report the synthesis of lead(II) complexes of 2-(thiophen-2-ylmethylene) hydrazine-1-carbothioamide (1) and 2-(1-(thiophen-2-yl) ethylene) hydrazine-1-carbothioamide (2), which were used as single source precursors in hexadecylamine (HDA) and oleylamine (OLA) at 190, 230, and 270°C to synthesize lead(II) sulfide nanoparticles. Optical studies by UV–vis analysis showed a general blue shift in the absorption band edge of the PbS nanoparticles (NPs) with energy bandgaps determined by Tauc’s plots ranging from 2.15 to 3.11 eV. The development of NPs with a variety of morphologies that changed with temperature and precursor type was demonstrated by morphological characterization using scanning electron microscopy and transmission electron microscopy. Cubic, rod-shaped, and nearly spherical-shaped PbS were formed. Powder X-ray diffraction (p-XRD) structural studies revealed the face-centered cubic structure of PbS nanoparticles. The elements contained in the nanoparticles were identified by energy dispersive X-ray spectroscopy (EDX). These results suggest that the size, shape, and optical properties of the synthesized PbS NPs were affected by reaction temperature, capping group, and precursor type. Under UV irradiation, the photocatalytic activity of HDA-capped PbS nanoparticles on the degradation of methylene blue dye ranged from 28.3% to 60.0%, with lead sulfide nanoparticle obtained by thermolysis of complex (1) at 230°C showing the highest photocatalytic efficiency (60.0%).","PeriodicalId":16442,"journal":{"name":"Journal of Nanomaterials","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2024/9932000","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
引用次数: 0
Abstract
We report the synthesis of lead(II) complexes of 2-(thiophen-2-ylmethylene) hydrazine-1-carbothioamide (1) and 2-(1-(thiophen-2-yl) ethylene) hydrazine-1-carbothioamide (2), which were used as single source precursors in hexadecylamine (HDA) and oleylamine (OLA) at 190, 230, and 270°C to synthesize lead(II) sulfide nanoparticles. Optical studies by UV–vis analysis showed a general blue shift in the absorption band edge of the PbS nanoparticles (NPs) with energy bandgaps determined by Tauc’s plots ranging from 2.15 to 3.11 eV. The development of NPs with a variety of morphologies that changed with temperature and precursor type was demonstrated by morphological characterization using scanning electron microscopy and transmission electron microscopy. Cubic, rod-shaped, and nearly spherical-shaped PbS were formed. Powder X-ray diffraction (p-XRD) structural studies revealed the face-centered cubic structure of PbS nanoparticles. The elements contained in the nanoparticles were identified by energy dispersive X-ray spectroscopy (EDX). These results suggest that the size, shape, and optical properties of the synthesized PbS NPs were affected by reaction temperature, capping group, and precursor type. Under UV irradiation, the photocatalytic activity of HDA-capped PbS nanoparticles on the degradation of methylene blue dye ranged from 28.3% to 60.0%, with lead sulfide nanoparticle obtained by thermolysis of complex (1) at 230°C showing the highest photocatalytic efficiency (60.0%).
期刊介绍:
The overall aim of the Journal of Nanomaterials is to bring science and applications together on nanoscale and nanostructured materials with emphasis on synthesis, processing, characterization, and applications of materials containing true nanosize dimensions or nanostructures that enable novel/enhanced properties or functions. It is directed at both academic researchers and practicing engineers. Journal of Nanomaterials will highlight the continued growth and new challenges in nanomaterials science, engineering, and nanotechnology, both for application development and for basic research.