RPN1 promotes the proliferation and invasion of breast cancer cells by activating the PI3K/AKT/mTOR signaling pathway

Wei-juan Shen, Yi Zhang
{"title":"RPN1 promotes the proliferation and invasion of breast cancer cells by activating the PI3K/AKT/mTOR signaling pathway","authors":"Wei-juan Shen, Yi Zhang","doi":"10.1007/s12672-024-00875-8","DOIUrl":null,"url":null,"abstract":"<p>Ribophorin I (RPN1), a part of an N-oligosaccharyl-transferase complex, plays a vital role in the development of multiple cancers. However, its biological role in breast cancer has not been completely clarified. The RPN1 expression level was measured in breast cancer tissues and breast cancer cell lines (MCF7) using RT-qPCR. After down-regulating RPN1 expression by shRNA, the effects of RPN1 on the proliferation, migration and invasion of MCF7 cells were examined. Mechanistically, we assessed the effect of RPN1 on the PI3K/ AKT/mTOR signaling pathway. We found that RPN1 level was up-regulated in breast cancer tissues and cells compared with adjacent non-tumor tissues or MCF10A cells. RPN1 knockdown induced apoptosis and attenuated the proliferation, migration, and invasion of MCF7 cells. Moreover, RPN1 knockdown lowered the levels of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR, which were rescued by 740Y-P, a PI3K activator. 740Y-P also reversed the effects of RPN1 knockdown on apoptosis, proliferation, migration, and invasion in MCF7 cells. Taken together, RPN1 promotes the proliferation, migration, and invasion of breast cancer cells via the PI3K/AKT/mTOR signaling pathway.</p>","PeriodicalId":13170,"journal":{"name":"Hormones and Cancer","volume":"86 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hormones and Cancer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s12672-024-00875-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Ribophorin I (RPN1), a part of an N-oligosaccharyl-transferase complex, plays a vital role in the development of multiple cancers. However, its biological role in breast cancer has not been completely clarified. The RPN1 expression level was measured in breast cancer tissues and breast cancer cell lines (MCF7) using RT-qPCR. After down-regulating RPN1 expression by shRNA, the effects of RPN1 on the proliferation, migration and invasion of MCF7 cells were examined. Mechanistically, we assessed the effect of RPN1 on the PI3K/ AKT/mTOR signaling pathway. We found that RPN1 level was up-regulated in breast cancer tissues and cells compared with adjacent non-tumor tissues or MCF10A cells. RPN1 knockdown induced apoptosis and attenuated the proliferation, migration, and invasion of MCF7 cells. Moreover, RPN1 knockdown lowered the levels of p-PI3K/PI3K, p-AKT/AKT, and p-mTOR/mTOR, which were rescued by 740Y-P, a PI3K activator. 740Y-P also reversed the effects of RPN1 knockdown on apoptosis, proliferation, migration, and invasion in MCF7 cells. Taken together, RPN1 promotes the proliferation, migration, and invasion of breast cancer cells via the PI3K/AKT/mTOR signaling pathway.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
RPN1 通过激活 PI3K/AKT/mTOR 信号通路促进乳腺癌细胞的增殖和侵袭
核糖蛋白 I(RPN1)是 N-寡糖基转移酶复合物的一部分,在多种癌症的发展过程中起着至关重要的作用。然而,它在乳腺癌中的生物学作用尚未完全明确。本研究利用 RT-qPCR 技术检测了 RPN1 在乳腺癌组织和乳腺癌细胞系(MCF7)中的表达水平。通过 shRNA 下调 RPN1 的表达后,研究了 RPN1 对 MCF7 细胞增殖、迁移和侵袭的影响。我们从机制上评估了RPN1对PI3K/ AKT/mTOR信号通路的影响。我们发现,与邻近的非肿瘤组织或 MCF10A 细胞相比,RPN1 在乳腺癌组织和细胞中的水平上调。敲除 RPN1 可诱导 MCF7 细胞凋亡,并减少其增殖、迁移和侵袭。此外,RPN1基因敲除降低了p-PI3K/PI3K、p-AKT/AKT和p-mTOR/mTOR的水平,而PI3K激活剂740Y-P可以挽救这些水平。740Y-P 还逆转了 RPN1 敲除对 MCF7 细胞凋亡、增殖、迁移和侵袭的影响。综上所述,RPN1 通过 PI3K/AKT/mTOR 信号通路促进乳腺癌细胞的增殖、迁移和侵袭。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A reference for selecting an appropriate method for generating glioblastoma organoids from the application perspective Prognostic aging gene-based score for colorectal cancer: unveiling links to drug resistance, mutation burden, and personalized treatment strategies Evaluation of circulating plasma proteins in prostate cancer using mendelian randomization Clinical efficacy and immune response of BCL-2 inhibitors combined with hypomethylating agents in the treatment of acute myeloid leukemia Nanoquercetin based nanoformulations for triple negative breast cancer therapy and its role in overcoming drug resistance
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1