A Spectral Method for a Fokker-Planck Equation in Neuroscience with Applications in Neuron Networks with Learning Rules

IF 2.6 3区 物理与天体物理 Q1 PHYSICS, MATHEMATICAL Communications in Computational Physics Pub Date : 2024-01-01 DOI:10.4208/cicp.oa-2023-0141
Pei Zhang,Yanli Wang, Zhennan Zhou
{"title":"A Spectral Method for a Fokker-Planck Equation in Neuroscience with Applications in Neuron Networks with Learning Rules","authors":"Pei Zhang,Yanli Wang, Zhennan Zhou","doi":"10.4208/cicp.oa-2023-0141","DOIUrl":null,"url":null,"abstract":"In this work, we consider the Fokker-Planck equation of the Nonlinear Noisy\nLeaky Integrate-and-Fire (NNLIF) model for neuron networks. Due to the firing events\nof neurons at the microscopic level, this Fokker-Planck equation contains dynamic\nboundary conditions involving specific internal points. To efficiently solve this problem and explore the properties of the unknown, we construct a flexible numerical\nscheme for the Fokker-Planck equation in the framework of spectral methods that can\naccurately handle the dynamic boundary condition. This numerical scheme is stable\nwith suitable choices of test function spaces, and asymptotic preserving, and it is easily extendable to variant models with multiple time scales. We also present extensive\nnumerical examples to verify the scheme properties, including order of convergence\nand time efficiency, and explore unique properties of the model, including blow-up\nphenomena for the NNLIF model and learning and discriminative properties for the\nNNLIF model with learning rules.","PeriodicalId":50661,"journal":{"name":"Communications in Computational Physics","volume":"297 2 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications in Computational Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.4208/cicp.oa-2023-0141","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MATHEMATICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In this work, we consider the Fokker-Planck equation of the Nonlinear Noisy Leaky Integrate-and-Fire (NNLIF) model for neuron networks. Due to the firing events of neurons at the microscopic level, this Fokker-Planck equation contains dynamic boundary conditions involving specific internal points. To efficiently solve this problem and explore the properties of the unknown, we construct a flexible numerical scheme for the Fokker-Planck equation in the framework of spectral methods that can accurately handle the dynamic boundary condition. This numerical scheme is stable with suitable choices of test function spaces, and asymptotic preserving, and it is easily extendable to variant models with multiple time scales. We also present extensive numerical examples to verify the scheme properties, including order of convergence and time efficiency, and explore unique properties of the model, including blow-up phenomena for the NNLIF model and learning and discriminative properties for the NNLIF model with learning rules.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
神经科学中福克尔-普朗克方程的谱方法及其在具有学习规则的神经元网络中的应用
在这项研究中,我们考虑了神经元网络的非线性噪声泄漏积分点火(NNLIF)模型的福克-普朗克方程。由于神经元在微观层面上的发射事件,这个福克-普朗克方程包含了涉及特定内部点的动态边界条件。为了高效地解决这个问题并探索未知数的特性,我们在频谱方法的框架内为福克-普朗克方程构建了一个灵活的数值方案,可以准确地处理动态边界条件。该数值方案在测试函数空间的适当选择下是稳定的,并具有渐近保全性,而且很容易扩展到具有多个时间尺度的变体模型。我们还给出了更多的数值示例来验证该方案的特性,包括收敛阶次和时间效率,并探讨了模型的独特特性,包括 NNLIF 模型的吹风现象和带有学习规则的 NNLIF 模型的学习和判别特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Communications in Computational Physics
Communications in Computational Physics 物理-物理:数学物理
CiteScore
4.70
自引率
5.40%
发文量
84
审稿时长
9 months
期刊介绍: Communications in Computational Physics (CiCP) publishes original research and survey papers of high scientific value in computational modeling of physical problems. Results in multi-physics and multi-scale innovative computational methods and modeling in all physical sciences will be featured.
期刊最新文献
A Model-Data Asymptotic-Preserving Neural Network Method Based on Micro-Macro Decomposition for Gray Radiative Transfer Equations A Causality-DeepONet for Causal Responses of Linear Dynamical Systems JefiPIC: A 3-D Full Electromagnetic Particle-in-Cell Simulator Based on Jefimenko’s Equations on GPU A Comparative Study of Hydrodynamic Lattice Boltzmann Equation in Phase-Field-Based Multiphase Flow Models Finite-Volume TENO Scheme with a New Cell-Interface Flux Evaluation Strategy for Unstructured Meshes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1