D3PBO: Dynamic Domain Decomposition based Parallel Bayesian Optimization for Large-scale Analog Circuit Sizing

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE ACM Transactions on Design Automation of Electronic Systems Pub Date : 2024-01-31 DOI:10.1145/3643811
Aidong Zhao, Tianchen Gu, Zhaori Bi, Fan Yang, Changhao Yan, Xuan Zeng, Zixiao Lin, Wenchuang Hu, Dian Zhou
{"title":"D3PBO: Dynamic Domain Decomposition based Parallel Bayesian Optimization for Large-scale Analog Circuit Sizing","authors":"Aidong Zhao, Tianchen Gu, Zhaori Bi, Fan Yang, Changhao Yan, Xuan Zeng, Zixiao Lin, Wenchuang Hu, Dian Zhou","doi":"10.1145/3643811","DOIUrl":null,"url":null,"abstract":"<p>Bayesian optimization (BO) is an efficient global optimization method for expensive black-box functions. Whereas, the expansion for high-dimensional problems and large sample budgets still remains a severe challenge. In order to extend BO for large-scale analog circuit synthesis, a novel computationally efficient parallel BO method, D<sup>3</sup>PBO, is proposed for high-dimensional problems in this work. We introduce the dynamic domain decomposition method based on maximum variance between clusters. The search space is decomposed into subdomains progressively to limit the maximal number of observations in each domain. The promising domain is explored by multi-trust region based batch BO with the local Gaussian process (GP) model. As the domain decomposition progresses, the basin-shaped domain is identified using a GP-assisted quadratic regression method and exploited by the local search method BOBYQA to achieve faster convergence rate. The time complexity of D<sup>3</sup>PBO is constant for each iteration. Experiments demonstrate that D<sup>3</sup>PBO obtains better results with significant less runtime consumption compared to state-of-the-art methods. For the circuit optimization experiments, D<sup>3</sup>PBO achieves up to 10 × runtime speedup compared to TuRBO with better solutions.</p>","PeriodicalId":50944,"journal":{"name":"ACM Transactions on Design Automation of Electronic Systems","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Design Automation of Electronic Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3643811","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

Abstract

Bayesian optimization (BO) is an efficient global optimization method for expensive black-box functions. Whereas, the expansion for high-dimensional problems and large sample budgets still remains a severe challenge. In order to extend BO for large-scale analog circuit synthesis, a novel computationally efficient parallel BO method, D3PBO, is proposed for high-dimensional problems in this work. We introduce the dynamic domain decomposition method based on maximum variance between clusters. The search space is decomposed into subdomains progressively to limit the maximal number of observations in each domain. The promising domain is explored by multi-trust region based batch BO with the local Gaussian process (GP) model. As the domain decomposition progresses, the basin-shaped domain is identified using a GP-assisted quadratic regression method and exploited by the local search method BOBYQA to achieve faster convergence rate. The time complexity of D3PBO is constant for each iteration. Experiments demonstrate that D3PBO obtains better results with significant less runtime consumption compared to state-of-the-art methods. For the circuit optimization experiments, D3PBO achieves up to 10 × runtime speedup compared to TuRBO with better solutions.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
D3PBO:基于动态领域分解的并行贝叶斯优化,用于大规模模拟电路选型
贝叶斯优化(BO)是一种针对昂贵的黑盒函数的高效全局优化方法。然而,对高维问题和大样本预算的扩展仍然是一个严峻的挑战。为了将 BO 扩展到大规模模拟电路合成中,本研究针对高维问题提出了一种新型计算高效的并行 BO 方法 D3PBO。我们引入了基于簇间最大方差的动态域分解方法。搜索空间被逐步分解成子域,以限制每个域中观测值的最大数量。通过基于多信任区域的批量 BO 和本地高斯过程(GP)模型,探索有希望的域。随着域分解的进行,利用 GP 辅助二次回归方法识别出盆地状域,并通过局部搜索方法 BOBYQA 加以利用,以实现更快的收敛速度。D3PBO 的时间复杂度在每次迭代中都是恒定的。实验证明,与最先进的方法相比,D3PBO 能以更少的运行时间获得更好的结果。在电路优化实验中,与 TuRBO 相比,D3PBO 的运行速度提高了 10 倍,并获得了更好的解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACM Transactions on Design Automation of Electronic Systems
ACM Transactions on Design Automation of Electronic Systems 工程技术-计算机:软件工程
CiteScore
3.20
自引率
7.10%
发文量
105
审稿时长
3 months
期刊介绍: TODAES is a premier ACM journal in design and automation of electronic systems. It publishes innovative work documenting significant research and development advances on the specification, design, analysis, simulation, testing, and evaluation of electronic systems, emphasizing a computer science/engineering orientation. Both theoretical analysis and practical solutions are welcome.
期刊最新文献
Efficient Attacks on Strong PUFs via Covariance and Boolean Modeling PriorMSM: An Efficient Acceleration Architecture for Multi-Scalar Multiplication Multi-Stream Scheduling of Inference Pipelines on Edge Devices - a DRL Approach A Power Optimization Approach for Large-scale RM-TB Dual Logic Circuits Based on an Adaptive Multi-Task Intelligent Algorithm MAB-BMC: A Formal Verification Enhancer by Harnessing Multiple BMC Engines Together
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1