A novel approach for detecting deep fake videos using graph neural network

IF 8.6 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Journal of Big Data Pub Date : 2024-02-01 DOI:10.1186/s40537-024-00884-y
{"title":"A novel approach for detecting deep fake videos using graph neural network","authors":"","doi":"10.1186/s40537-024-00884-y","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Deep fake technology has emerged as a double-edged sword in the digital world. While it holds potential for legitimate uses, it can also be exploited to manipulate video content, causing severe social and security concerns. The research gap lies in the fact that traditional deep fake detection methods, such as visual quality analysis or inconsistency detection, need help to keep up with the rapidly advancing technology used to create deep fakes. That means there's a need for more sophisticated detection techniques. This paper introduces an enhanced approach for detecting deep fake videos using graph neural network (GNN). The proposed method splits the detection process into two phases: a mini-batch graph convolution network stream four-block CNN stream comprising Convolution, Batch Normalization, and Activation function. The final step is a flattening operation, which is essential for connecting the convolutional layers to the dense layer. The fusion of these two phases is performed using three different fusion networks: FuNet-A (additive fusion), FuNet-M (element-wise multiplicative fusion), and FuNet-C (concatenation fusion). The paper further evaluates the proposed model on different datasets, where it achieved an impressive training and validation accuracy of 99.3% after 30 epochs.</p>","PeriodicalId":15158,"journal":{"name":"Journal of Big Data","volume":"14 1","pages":""},"PeriodicalIF":8.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Big Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s40537-024-00884-y","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Deep fake technology has emerged as a double-edged sword in the digital world. While it holds potential for legitimate uses, it can also be exploited to manipulate video content, causing severe social and security concerns. The research gap lies in the fact that traditional deep fake detection methods, such as visual quality analysis or inconsistency detection, need help to keep up with the rapidly advancing technology used to create deep fakes. That means there's a need for more sophisticated detection techniques. This paper introduces an enhanced approach for detecting deep fake videos using graph neural network (GNN). The proposed method splits the detection process into two phases: a mini-batch graph convolution network stream four-block CNN stream comprising Convolution, Batch Normalization, and Activation function. The final step is a flattening operation, which is essential for connecting the convolutional layers to the dense layer. The fusion of these two phases is performed using three different fusion networks: FuNet-A (additive fusion), FuNet-M (element-wise multiplicative fusion), and FuNet-C (concatenation fusion). The paper further evaluates the proposed model on different datasets, where it achieved an impressive training and validation accuracy of 99.3% after 30 epochs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用图神经网络检测深度伪造视频的新方法
摘要 深度伪造技术已成为数字世界的一把双刃剑。虽然它具有合法使用的潜力,但也可能被用来操纵视频内容,引发严重的社会和安全问题。研究空白在于,传统的深度伪造检测方法,如视觉质量分析或不一致性检测,需要帮助才能跟上用于制造深度伪造的快速发展的技术。这意味着需要更复杂的检测技术。本文介绍了一种利用图神经网络(GNN)检测深度伪造视频的增强型方法。所提出的方法将检测过程分为两个阶段:迷你批量图卷积网络流四块 CNN 流,包括卷积、批量归一化和激活函数。最后一步是扁平化操作,这对于连接卷积层和稠密层至关重要。这两个阶段的融合使用了三种不同的融合网络:FuNet-A(加法融合)、FuNet-M(元素乘法融合)和 FuNet-C(串联融合)。论文进一步在不同的数据集上对所提出的模型进行了评估,在 30 个历时之后,该模型的训练和验证准确率达到了令人印象深刻的 99.3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Big Data
Journal of Big Data Computer Science-Information Systems
CiteScore
17.80
自引率
3.70%
发文量
105
审稿时长
13 weeks
期刊介绍: The Journal of Big Data publishes high-quality, scholarly research papers, methodologies, and case studies covering a broad spectrum of topics, from big data analytics to data-intensive computing and all applications of big data research. It addresses challenges facing big data today and in the future, including data capture and storage, search, sharing, analytics, technologies, visualization, architectures, data mining, machine learning, cloud computing, distributed systems, and scalable storage. The journal serves as a seminal source of innovative material for academic researchers and practitioners alike.
期刊最新文献
Shielding networks: enhancing intrusion detection with hybrid feature selection and stack ensemble learning Machine learning and deep learning models based grid search cross validation for short-term solar irradiance forecasting Optimizing poultry audio signal classification with deep learning and burn layer fusion Integrating microarray-based spatial transcriptomics and RNA-seq reveals tissue architecture in colorectal cancer A model for investment type recommender system based on the potential investors based on investors and experts feedback using ANFIS and MNN
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1