{"title":"An ASER AI/ML expert panel formative user research study for an interpretable interactive splenic AAST grading graphical user interface prototype.","authors":"Nathan Sarkar, Mitsuo Kumagai, Samantha Meyr, Sriya Pothapragada, Mathias Unberath, Guang Li, Sagheer Rauf Ahmed, Elana Beth Smith, Melissa Ann Davis, Garvit Devmohan Khatri, Anjali Agrawal, Zachary Scott Delproposto, Haomin Chen, Catalina Gómez Caballero, David Dreizin","doi":"10.1007/s10140-024-02202-8","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>The AAST Organ Injury Scale is widely adopted for splenic injury severity but suffers from only moderate inter-rater agreement. This work assesses SpleenPro, a prototype interactive explainable artificial intelligence/machine learning (AI/ML) diagnostic aid to support AAST grading, for effects on radiologist dwell time, agreement, clinical utility, and user acceptance.</p><p><strong>Methods: </strong>Two trauma radiology ad hoc expert panelists independently performed timed AAST grading on 76 admission CT studies with blunt splenic injury, first without AI/ML assistance, and after a 2-month washout period and randomization, with AI/ML assistance. To evaluate user acceptance, three versions of the SpleenPro user interface with increasing explainability were presented to four independent expert panelists with four example cases each. A structured interview consisting of Likert scales and free responses was conducted, with specific questions regarding dimensions of diagnostic utility (DU); mental support (MS); effort, workload, and frustration (EWF); trust and reliability (TR); and likelihood of future use (LFU).</p><p><strong>Results: </strong>SpleenPro significantly decreased interpretation times for both raters. Weighted Cohen's kappa increased from 0.53 to 0.70 with AI/ML assistance. During user acceptance interviews, increasing explainability was associated with improvement in Likert scores for MS, EWF, TR, and LFU. Expert panelists indicated the need for a combined early notification and grading functionality, PACS integration, and report autopopulation to improve DU.</p><p><strong>Conclusions: </strong>SpleenPro was useful for improving objectivity of AAST grading and increasing mental support. Formative user research identified generalizable concepts including the need for a combined detection and grading pipeline and integration with the clinical workflow.</p>","PeriodicalId":11623,"journal":{"name":"Emergency Radiology","volume":" ","pages":"167-178"},"PeriodicalIF":1.7000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11257379/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Emergency Radiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s10140-024-02202-8","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/2 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: The AAST Organ Injury Scale is widely adopted for splenic injury severity but suffers from only moderate inter-rater agreement. This work assesses SpleenPro, a prototype interactive explainable artificial intelligence/machine learning (AI/ML) diagnostic aid to support AAST grading, for effects on radiologist dwell time, agreement, clinical utility, and user acceptance.
Methods: Two trauma radiology ad hoc expert panelists independently performed timed AAST grading on 76 admission CT studies with blunt splenic injury, first without AI/ML assistance, and after a 2-month washout period and randomization, with AI/ML assistance. To evaluate user acceptance, three versions of the SpleenPro user interface with increasing explainability were presented to four independent expert panelists with four example cases each. A structured interview consisting of Likert scales and free responses was conducted, with specific questions regarding dimensions of diagnostic utility (DU); mental support (MS); effort, workload, and frustration (EWF); trust and reliability (TR); and likelihood of future use (LFU).
Results: SpleenPro significantly decreased interpretation times for both raters. Weighted Cohen's kappa increased from 0.53 to 0.70 with AI/ML assistance. During user acceptance interviews, increasing explainability was associated with improvement in Likert scores for MS, EWF, TR, and LFU. Expert panelists indicated the need for a combined early notification and grading functionality, PACS integration, and report autopopulation to improve DU.
Conclusions: SpleenPro was useful for improving objectivity of AAST grading and increasing mental support. Formative user research identified generalizable concepts including the need for a combined detection and grading pipeline and integration with the clinical workflow.
期刊介绍:
To advance and improve the radiologic aspects of emergency careTo establish Emergency Radiology as an area of special interest in the field of diagnostic imagingTo improve methods of education in Emergency RadiologyTo provide, through formal meetings, a mechanism for presentation of scientific papers on various aspects of Emergency Radiology and continuing educationTo promote research in Emergency Radiology by clinical and basic science investigators, including residents and other traineesTo act as the resource body on Emergency Radiology for those interested in emergency patient care Members of the American Society of Emergency Radiology (ASER) receive the Emergency Radiology journal as a benefit of membership!