Enhancing Zn-bearing gossans from GeoEye-1 and Landsat 8 OLI data for non-sulphide Zn deposit exploration

IF 3.7 3区 地球科学 Q2 ENVIRONMENTAL SCIENCES Egyptian Journal of Remote Sensing and Space Sciences Pub Date : 2024-02-01 DOI:10.1016/j.ejrs.2024.01.003
Mehdi Honarmand , Hadi Shahriari , Mahdieh Hosseinjani Zadeh , Ali Ghorbani
{"title":"Enhancing Zn-bearing gossans from GeoEye-1 and Landsat 8 OLI data for non-sulphide Zn deposit exploration","authors":"Mehdi Honarmand ,&nbsp;Hadi Shahriari ,&nbsp;Mahdieh Hosseinjani Zadeh ,&nbsp;Ali Ghorbani","doi":"10.1016/j.ejrs.2024.01.003","DOIUrl":null,"url":null,"abstract":"<div><p>This study aims to map the non-sulphide Zinc (Zn)-bearing gossans at the Gujer Zn deposit area, Central Iran, using Landsat 8 Operational Land Imager (OLI) and GeoEye-1 satellites. The colour composites, Principal Component Analysis (PCA), and Support Vector Machine (SVM) were adopted for image analysis. Zn-bearing gossans contain Fe-oxyhydroxide minerals displaying spectral characteristics in visible and infrared (IR) wavelengths. The application of colour composites using GeoEye-1 images resulted in the delineation of gossans (real target) and ferruginous sandstones (false targets) having the same colour tone in the study area. IR spectroscopy of ore samples showed that hemimorphite exhibits low absorption in shortwave infrared (SWIR) wavelengths. Consequently, the Crosta-PC analysis was conducted using bands 4, 5, SWIR-1, and SWIR-2 of Landsat OLI to enhance only ore gossans. Five target zones were specified using the Crosta technique. The SVM method was performed to increase the accuracy of image analysis using the Radial Basis Function (RBF) kernel. The SVM-RBF method accomplished enhancing ore gossans by defining a new target zone. According to the results, the application of the Crosta technique using bands 4, 5, SWIR-1, and SWIR-2 of Landsat OLI can specify ore gossans and eliminate the interfering effect of ferruginous sandstones in similar geological settings. The SVM-RBF can improve the results of image processing using PC entry of Landsat OLI bands. GeoEye-1 images are useful for the initial assessment of geological units in the region and for delineating the accurate boundary of ore gossans derived from Landsat 8 OLI data.</p></div>","PeriodicalId":48539,"journal":{"name":"Egyptian Journal of Remote Sensing and Space Sciences","volume":"27 1","pages":"Pages 93-107"},"PeriodicalIF":3.7000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1110982324000036/pdfft?md5=3aaed19d465a1b8fca2a73573f7389be&pid=1-s2.0-S1110982324000036-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Egyptian Journal of Remote Sensing and Space Sciences","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1110982324000036","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

This study aims to map the non-sulphide Zinc (Zn)-bearing gossans at the Gujer Zn deposit area, Central Iran, using Landsat 8 Operational Land Imager (OLI) and GeoEye-1 satellites. The colour composites, Principal Component Analysis (PCA), and Support Vector Machine (SVM) were adopted for image analysis. Zn-bearing gossans contain Fe-oxyhydroxide minerals displaying spectral characteristics in visible and infrared (IR) wavelengths. The application of colour composites using GeoEye-1 images resulted in the delineation of gossans (real target) and ferruginous sandstones (false targets) having the same colour tone in the study area. IR spectroscopy of ore samples showed that hemimorphite exhibits low absorption in shortwave infrared (SWIR) wavelengths. Consequently, the Crosta-PC analysis was conducted using bands 4, 5, SWIR-1, and SWIR-2 of Landsat OLI to enhance only ore gossans. Five target zones were specified using the Crosta technique. The SVM method was performed to increase the accuracy of image analysis using the Radial Basis Function (RBF) kernel. The SVM-RBF method accomplished enhancing ore gossans by defining a new target zone. According to the results, the application of the Crosta technique using bands 4, 5, SWIR-1, and SWIR-2 of Landsat OLI can specify ore gossans and eliminate the interfering effect of ferruginous sandstones in similar geological settings. The SVM-RBF can improve the results of image processing using PC entry of Landsat OLI bands. GeoEye-1 images are useful for the initial assessment of geological units in the region and for delineating the accurate boundary of ore gossans derived from Landsat 8 OLI data.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 GeoEye-1 和 Landsat 8 OLI 数据增强非硫化锌矿床勘探中的含锌锭岩
本研究旨在利用大地遥感卫星 8(Landsat 8 Operational Land Imager,OLI)和 GeoEye-1 卫星绘制伊朗中部古杰尔锌矿床区的非硫化物含锌(Zn)矿床。采用彩色合成、主成分分析(PCA)和支持向量机(SVM)进行图像分析。含锌格桑含有铁氧氢氧化物矿物,在可见光和红外线(IR)波段显示出光谱特征。利用 GeoEye-1 图像进行色彩合成后,在研究区域划分出了具有相同色调的格桑(真实目标)和铁锈砂岩(虚假目标)。矿石样本的红外光谱分析显示,半透明岩在短波红外(SWIR)波段的吸收率较低。因此,利用大地遥感卫星 OLI 的波段 4、5、SWIR-1 和 SWIR-2 进行了 Crosta-PC 分析,只增强了矿斑。使用 Crosta 技术确定了五个目标区。使用径向基函数 (RBF) 内核,采用 SVM 方法提高图像分析的准确性。SVM-RBF 方法通过定义新的目标区来增强矿斑。研究结果表明,利用 Landsat OLI 的波段 4、5、SWIR-1 和 SWIR-2 应用 Crosta 技术可以确定矿斑,并消除类似地质环境中铁锈砂岩的干扰效应。SVM-RBF 可以改善使用 PC 输入 Landsat OLI 波段的图像处理结果。GeoEye-1 图像有助于对该地区的地质单元进行初步评估,也有助于根据 Landsat 8 OLI 数据准确划定矿斑的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
8.10
自引率
0.00%
发文量
85
审稿时长
48 weeks
期刊介绍: The Egyptian Journal of Remote Sensing and Space Sciences (EJRS) encompasses a comprehensive range of topics within Remote Sensing, Geographic Information Systems (GIS), planetary geology, and space technology development, including theories, applications, and modeling. EJRS aims to disseminate high-quality, peer-reviewed research focusing on the advancement of remote sensing and GIS technologies and their practical applications for effective planning, sustainable development, and environmental resource conservation. The journal particularly welcomes innovative papers with broad scientific appeal.
期刊最新文献
Efficient bundle optimization for accurate camera pose estimation in mobile augmented reality systems Revealing Potential Mineralization Zones Utilizing Landsat-9, ASTER and Airborne Radiometric Data at Elkharaza-Dara Area, North Eastern Desert, Egypt Potential of temporal satellite data analysis for detection of weed infestation in rice crop Visualization of humpback whale tracking on edge device using space-borne remote sensing data for Indian Ocean Phenology-based winter wheat classification for crop growth monitoring using multi-temporal sentinel-2 satellite data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1