{"title":"Photovoltaics literature survey (No. 189)","authors":"Ziv Hameiri","doi":"10.1002/pip.3773","DOIUrl":null,"url":null,"abstract":"<p>In order to help readers stay up-to-date in the field, each issue of <i>Progress in Photovoltaics</i> will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including <i>IEEE Journal of Photovoltaics</i>, <i>Solar Energy Materials and Solar Cells</i>, <i>Renewable Energy</i>, <i>Renewable and Sustainable Energy Reviews</i>, <i>Journal of Applied Physics</i>, and <i>Applied Physics Letters</i>. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at <span>[email protected]</span>.</p><p>Vicari Stefani B, Kim M, Zhang Y, et al. <b>Historical market projections and the future of silicon solar cells.</b> <i>Joule</i> 2023; <b>7</b>(12): 2684-2699.</p><p>Zhang CP, Wei K, Hu JF, et al. <b>A review on organic hole transport materials for perovskite solar cells: Structure, composition and reliability.</b> <i>Materials Today</i> 2023; <b>67</b>: 518-547.</p><p>Zhang JX, Chen XY, Wei HK, et al. <b>A lightweight network for photovoltaic cell defect detection in electroluminescence images based on neural architecture search and knowledge distillation.</b> <i>Applied Energy</i> 2024; <b>355</b>: 122184.</p><p>Pan JX, Chen ZM, Zhang TK, et al. <b>Operando dynamics of trapped carriers in perovskite solar cells observed via infrared optical activation spectroscopy.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 8000.</p><p>Lorenzo E, Moretón R, Solorzano J, et al. <b>On outdoor testing procedures of large samples of PV modules.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(1): 14-24.</p><p>Grant NE, Pain SL, Khorani E, et al. <b>Activation of Al</b><sub><b>2</b></sub><b>O</b><sub><b>3</b></sub> <b>surface passivation of silicon: Separating bulk and surface effects.</b> <i>Applied Surface Science</i> 2024; <b>645</b>: 158786.</p><p>Yue ZY, Wang GY, Huang ZG, et al. <b>Excellent crystalline silicon surface passivation by transparent conductive Al-doped ZnO/ITO stack.</b> <i>Applied Surface Science</i> 2024; <b>645</b>: 158845.</p><p>Xing C, Jiang C, Gu W, et al. <b>SrF</b><sub><b>x</b></sub><b>-based electron-selective contact with high tolerance to thickness for crystalline silicon solar cells enabling efficiency over 21%.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(1): 35-44.</p><p>Luo HW, Zheng XT, Kong WC, et al. <b>Inorganic framework composition engineering for scalable fabrication of perovskite/silicon tandem solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(12): 4993-5002.</p><p>Dipon MNA, Sahriar MA, Sarker S, et al. <b>A comprehensive study of mechanically stacked tandem photovoltaic devices: Materials selection and efficiency analysis using SCAPS.</b> <i>Energy Conversion and Management</i> 2024; <b>300</b>: 117904.</p><p>Mohamad Noh MF, Arzaee NA, Fat CC, et al. <b>Perovskite/CIGS tandem solar cells: progressive advances from technical perspectives.</b> <i>Materials Today Energy</i> 2024; <b>39</b>: 101473.</p><p>Bao Y, Ma T, Ai Z, et al. <b>Insights into efficiency deviation from current-mismatch for tandem photovoltaics.</b> <i>Nano Energy</i> 2024; <b>120</b>: 109165.</p><p>Kang Y, Yoon JW, Lee YK, et al. <b>Density-of-state engineering of conjugated polymers by implanting partial two-dimensional conjugation: Broad absorption and high performing organic photovoltaics.</b> <i>Chemical Engineering Journal</i> 2023; <b>478</b>: 147250.</p><p>Nakano K, Kaji Y, Tajima K. <b>Origin of electric field-dependent charge generation in organic photovoltaics with planar and bulk heterojunctions.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(48): 26499-26507.</p><p>Luo X, Freychet G, Gan Z, et al. <b>Intrinsically stretchable organic photovoltaic thin films enabled by optimized donor-acceptor pairing.</b> <i>Macromolecules</i> 2023; <b>56</b>(21): 8928-8938.</p><p>Song W, Ge JF, Xie L, et al. <b>Semi-transparent organic photovoltaics for agrivoltaic applications.</b> <i>Nano Energy</i> 2023; <b>116</b>: 108805.</p><p>Aziz NAS, Rahman MYA, Umar AA, et al. <b>Iridium-palladium binary alloy as a counter electrode in dye-sensitized solar cells.</b> <i>Dalton Transactions</i> 2023; <b>52</b>(48): 18354-18361.</p><p>Jumaah FN, Mustafa NM, Mobarak NN, et al. <b>Bio-based quaternary ammonium salt as an electrolyte for dye-sensitised solar cells.</b> <i>Electrochimica Acta</i> 2023; <b>472</b>: 143383.</p><p>Yan WY, Xiang F, Ou JH, et al. <b>Highly efficient dye-sensitized solar cells achieved by matching energy levels between pseudohalogen redox couples and organic donor- π-acceptor cyanoacrylic acid dyes.</b> <i>Electrochimica Acta</i> 2024; <b>473</b>: 143522.</p><p>Nawghare IS, Singh AK, Maibam A, et al. <b>Steric and electronic effect in unsymmetrical squaraine dyes for dye-sensitized solar cells.</b> <i>Journal of Physical Chemistry C</i> 2023; <b>127</b>(46): 22473-22488.</p><p>Mirzaei M, Gholivand MB. <b>P-doped NiS</b><sub><b>2</b></sub><b>/Ni nanoheteroparticles embedded into N-doped carbon framework anchored on multi-walled carbon nanotubes as an efficient counter electrode for Pt-free dye-sensitized solar cells.</b> <i>Materials Today Chemistry</i> 2024; <b>35</b>: 101862.</p><p>Norouzibazaz M, Gholivand MB, Taherpour AA, et al. <b>Experimental and computational investigation of multi-walled carbon nanotubes decorated by Co-Ni-Se@MoSe</b><sub><b>2</b></sub> <b>core-shell as a sustainable counter electrode for dye-sensitized solar cells.</b> <i>Materials Today Energy</i> 2023; <b>38</b>: 101447.</p><p>Aktas E, Poli I, Ponti C, et al. <b>One-step solution deposition of tin-perovskite onto a self-assembled monolayer with a DMSO-free solvent system.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(12): 5170-5174.</p><p>Ali W, Qin W, Tian H, et al. <b>Tuning lattice structure of ferroelastic twin-domains achieving efficient perovskite solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(12): 5070-5078.</p><p>Park SW, Heo JH, Lee HJ, et al. <b>Compositional design for high-efficiency all-inorganic tin halide perovskite solar cells.</b> <i>Acs Energy Letters</i> 2023; <b>8</b>(12): 5061-5069.</p><p>Wang HS, Yin YF, Xu J, et al. <b>Field-induced transport anisotropy in single-crystalline all-inorganic lead-halide perovskite nanowires.</b> <i>Acs Nano</i> 2023; <b>17</b>(23): 23671-23678.</p><p>Yue Y, Yang R, Zhang W, et al. <b>Cesium cyclopropane acid-aided crystal growth enables efficient inorganic perovskite solar cells with a high moisture tolerance.</b> <i>Angewandte Chemie - International Edition</i> 2024; <b>63</b>(1): e202315717.</p><p>Fan L, Yu M, Hu W, et al. <b>Reducing charge-recombination losses in photovoltaic cells by spontaneous reconstruction of n/p homojunction in a monolithic perovskite film using black phosphorus nanosheets.</b> <i>Chemical Engineering Journal</i> 2024; <b>479</b>: 147861.</p><p>Johnson SA, White KP, Tong J, et al. <b>Improving the barrier properties of tin oxide in metal halide perovskite solar cells using ozone to enhance nucleation.</b> <i>Joule</i> 2023; <b>7</b>(12): 2873-2893.</p><p>Vishnoi P, Rao CNR. <b>Temperature and pressure induced structural transitions of lead iodide perovskites.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>12</b>(1): 19-37.</p><p>Yin Y, Yang L, Zhang X, et al. <b>Pernicious effects and management of lead leakage from perovskite solar cells.</b> <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(47): 25825-25848.</p><p>Shui QJ, Shan SQ, Zhai YC, et al. <b>Evaporable fullerene indanones with controlled amorphous morphology as electron transport layers for inverted perovskite solar cells.</b> <i>Journal of the American Chemical Society</i> 2023; <b>145</b>(50): 27307-27315.</p><p>Wang Y, Zhou B, Han MDX, et al. <b>Formamidine formate as the multifunctional modulator at buried interface for efficient FAPbI</b><sub><b>3</b></sub> <b>perovskite solar cells.</b> <i>Nano Energy</i> 2023; <b>118</b>: 108981.</p><p>Yang HC, Cai WS, Wang M, et al. <b>Ultrathin nanolayer constituted by a natural polysaccharide achieves “egg-box” structured SnO</b><sub><b>2</b></sub> <b>nanoparticles toward efficient and stable perovskite solar cells.</b> <i>Nano Energy</i> 2024; <b>120</b>: 109111.</p><p>Zhang Q, Zhao QQ, Zhang CY, et al. <b>Tailoring the interface by a multifunctional amphiphilic molecule enabled 24.84%-efficiency and stable perovskite solar cells.</b> <i>Nano Energy</i> 2023; <b>118</b>: 109003.</p><p>Liang Z, Zhang Y, Xu H, et al. <b>Homogenizing out-of-plane cation composition in perovskite solar cells.</b> <i>Nature</i> 2023; <b>624</b>(7992): 557-563.</p><p>Dai Z, Padture NP. <b>Challenges and opportunities for the mechanical reliability of metal halide perovskites and photovoltaics.</b> <i>Nature Energy</i> 2023; <b>8</b>(12): 1319-1327.</p><p>Mandal TN, Heo JH, Im SH, et al. <b>Green method to prepare pure δ-FAPbI</b><sub><b>3</b></sub> <b>crystals for fabrication of highly efficient perovskite solar cells.</b> <i>Solar RRL</i> 2023; <b>7</b>(21): 2300496.</p><p>Zhao Y, Zheng S, Zhao Y, et al. <b>Proton radiation hardness and its loss mechanism of Cu</b><sub><b>2</b></sub><b>ZnSn(S,Se)</b><sub><b>4</b></sub> <b>thin film solar cells.</b> <i>Applied Physics Letters</i> 2023; <b>123</b>(23): 233901.</p><p>Zhao Y, Zhao J, Chen X, et al. <b>Suppressing surface and bulk effect enables high efficiency solution-processed kesterite solar cells.</b> <i>Chemical Engineering Journal</i> 2024; <b>479</b>: 147739.</p><p>Cai X, Wei SH. <b>Perspective on defect control in semiconductors for photovoltaics.</b> <i>Journal of Applied Physics</i> 2023; <b>134</b>(22): 220901.</p><p>Colombara D, Stanbery BJ, Sozzi G. <b>Revani diffusion model in Cu(In,Ga)Se</b><sub><b>2</b></sub>. <i>Journal of Materials Chemistry A</i> 2023; <b>11</b>(48): 26426-26434.</p><p>Menda UD, Ribeiro G, Deuermeier J, et al. <b>Thermal-carrier-escape mitigation in a quantum-dot-in-perovskite intermediate band solar cell via bandgap engineering.</b> <i>Acs Photonics</i> 2023; <b>10</b>(10): 3647-3655.</p><p>Welser RE, Polly SJ, Bogner BM, et al. <b>Impact of well number on high-efficiency strain-balanced quantum-well solar cells.</b> <i>IEEE Journal of Photovoltaics</i> 2023; <b>13</b>(1): 61-69.</p><p>Yang WY, Zhang XB, Chen ZM, et al. <b>Improvement of radiation resistance of GaInP/GaInAs/Ge triple-junction solar cell with GaInAs/GaAsP quantum wells.</b> <i>Japanese Journal of Applied Physics</i> 2024; <b>63</b>(1): 011001.</p><p>Yu M, Kuang X, Tian H, et al. <b>Laser-driven insulator-metal phase transitions in CsPbI</b><sub><b>3</b></sub> <b>quantum dots and influence of doped metal nanowires.</b> <i>Journal of Physical Chemistry Letters</i> 2023; <b>14</b>(44): 10012-10018.</p><p>Dehingia A, Das U, Mandal D, et al. <b>Application of Ti</b><sub><b>3</b></sub><b>C2T</b><sub><b>x</b></sub> <b>MXene nanosheets and quantum-dots in halide perovskite solar cells.</b> <i>Materials Today Sustainability</i> 2024; <b>25</b>: 100619.</p><p>Wang L, Chen Y, Lai Y, et al. <b>Highly efficient and stable tandem luminescent solar concentrators based on carbon dots and CuInSe</b><sub><b>2−x</b></sub><b>S</b><sub><b>x</b></sub><b>/ZnS quantum dots.</b> <i>Nanoscale</i> 2023; <b>16</b>(1): 188-194.</p><p>Li X, Dong X, Ye Y. <b>An interaction model applied to optimize photovoltaic farm location: A case study of China.</b> <i>Applied Energy</i> 2024; <b>356</b>: 122421.</p><p>Ma C, Xu X, Pang X, et al. <b>Scenario-based ultra-short-term rolling optimal operation of a photovoltaic-energy storage system under forecast uncertainty.</b> <i>Applied Energy</i> 2024; <b>356</b>: 122425.</p><p>Willockx B, Reher T, Lavaert C, et al. <b>Design and evaluation of an agrivoltaic system for a pear orchard.</b> <i>Applied Energy</i> 2024; <b>353</b>: 122166.</p><p>Dong XJ, Shen JN, Liu CW, et al. <b>Simultaneous capacity configuration and scheduling optimization of an integrated electrical vehicle charging station with photovoltaic and battery energy storage system.</b> <i>Energy</i> 2024; <b>289</b>: 129991.</p><p>Ali U, Bano S, Shamsi MH, et al. <b>Urban building energy performance prediction and retrofit analysis using data-driven machine learning approach.</b> <i>Energy and Buildings</i> 2024; <b>303</b>: 113768.</p><p>Ernst M, Liu X, Asselineau CA, et al. <b>Accurate modelling of the bifacial gain potential of rooftop solar photovoltaic systems.</b> <i>Energy Conversion and Management</i> 2024; <b>300</b>: 117947.</p><p>Liu YP, Li HY, Li L, et al. <b>A new electrostatic dust removal method using carbon nanotubes transparent conductive film for sustainable operation of solar photovoltaic panels.</b> <i>Energy Conversion and Management</i> 2024; <b>300</b>: 117923.</p><p>Khan UA, Khan NM, Zafar MH. <b>Resource efficient PV power forecasting: Transductive transfer learning based hybrid deep learning model for smart grid in Industry 5.0.</b> <i>Energy Conversion and Management: X</i> 2023; <b>20</b>: 100486.</p><p>Zaki M, Shahin A, Eskander S, et al. <b>Maximizing photovoltaic system power output with a master-slave strategy for parallel inverters.</b> <i>Energy Reports</i> 2024; <b>11</b>: 567-579.</p><p>Sharma M, Pareek S, Singh K. <b>An efficient power extraction using artificial intelligence based machine learning model for SPV array reconfiguration in solar industries.</b> <i>Engineering Applications of Artificial Intelligence</i> 2024; <b>129</b>: 107516.</p><p>Tang Y, Yang K, Zhang S, et al. <b>Photovoltaic power forecasting: A dual-attention gated recurrent unit framework incorporating weather clustering and transfer learning strategy.</b> <i>Engineering Applications of Artificial Intelligence</i> 2024; <b>130</b>: 107691.</p><p>Alam H, Alam MA, Butt NZ. <b>Techno economic modeling for agrivoltaics: Can agrivoltaics be more profitable than ground mounted PV?</b> <i>IEEE Journal of Photovoltaics</i> 2023; <b>13</b>(1): 174-186.</p><p>Wang X, Wen H, Chu G, et al. <b>Performance quantization and comparative assessment of voltage equalizers in mismatched photovoltaic differential power processing systems.</b> <i>IEEE Transactions on Power Electronics</i> 2024; <b>39</b>(1): 1656-1675.</p><p>Bing J, McKenzie DR, Stals T, et al. <b>Total equivalent energy efficiency metric for building-integrated photovoltaic windows.</b> <i>Joule</i> 2023; <b>7</b>(12): 2668-2683.</p><p>Kayri İ, Bayar MT. <b>A new approach to determine the long-term effect of efficiency losses due to different dust types accumulation on PV modules with artificial neural networks.</b> <i>Journal of Cleaner Production</i> 2024; <b>434</b>: 140282.</p><p>Muñoz-Cerón E, Moreno-Buesa S, Leloux J, et al. <b>Evaluation of the bifaciality coefficient of bifacial photovoltaic modules under real operating conditions.</b> <i>Journal of Cleaner Production</i> 2024; <b>434</b>: 139807.</p><p>Calcabrini A, Muttillo M, Zeman M, et al. <b>Electrical performance of a fully reconfigurable series-parallel photovoltaic module.</b> <i>Nature Communications</i> 2023; <b>14</b>(1): 8113.</p><p>Khan MZ, Willers G, Alowais AA, et al. <b>Soiling mitigation potential of glass coatings and tracker routines in the desert climate of Saudi Arabia.</b> <i>Progress in Photovoltaics: Research and Applications</i> 2024; <b>32</b>(1): 45-55.</p><p>Fang X, Yang Q. <b>Dynamic reconfiguration of photovoltaic array for minimizing mismatch loss.</b> <i>Renewable and Sustainable Energy Reviews</i> 2024; <b>191</b>: 114160.</p><p>Liu W, Xu B, Liu Y, et al. <b>A field-function methodology predicting the service lifetime of photovoltaic modules.</b> <i>Renewable and Sustainable Energy Reviews</i> 2024; <b>192</b>: 114266.</p><p>Rodrigo PM, Mouhib E, Fernandez EF, et al. <b>Comprehensive ground coverage analysis of large-scale fixed-tilt bifacial photovoltaic plants.</b> <i>Renewable and Sustainable Energy Reviews</i> 2024; <b>192</b>: 114229.</p><p>Alkharusi T, Huang G, Markides CN. <b>Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance.</b> <i>Renewable Energy</i> 2024; <b>220</b>: 119422.</p><p>Jiao X, Li X, Yang Y, et al. <b>Novel and comprehensive approach for power loss estimation of soiled photovoltaic modules.</b> <i>Solar Energy</i> 2024; <b>268</b>: 112283.</p><p>Wan L, Zhao L, Xu W, et al. <b>Dust deposition on the photovoltaic panel: A comprehensive survey on mechanisms, effects, mathematical modeling, cleaning methods, and monitoring systems.</b> <i>Solar Energy</i> 2024; <b>268</b>: 112300.</p><p>Ryland M, He W. <b>Holistic analysis of consumer energy decarbonisation options and tariff effects.</b> <i>Applied Energy</i> 2024; <b>353</b>: 122165.</p><p>Al-Quraan A, Al-Mhairat B. <b>Sizing and energy management of standalone hybrid renewable energy systems based on economic predictive control.</b> <i>Energy Conversion and Management</i> 2024; <b>300</b>: 117948.</p><p>Xiuchun W, Xuedong H, Xiaoqian S, et al. <b>The diffusion path of distributed photovoltaic power generation technology driven by individual behavior.</b> <i>Energy Reports</i> 2024; <b>11</b>: 651-658.</p><p>Sheng CH, Liu JL. <b>A systematic analysis of stakeholder interaction and the barriers towards upscaling urban residential solar PV: The case of Shanghai, China.</b> <i>Energy Strategy Reviews</i> 2023; <b>50</b>: 101259.</p><p>Zhou Y, Wang H, Liu Z, et al. <b>Can Solar photovoltaic poverty alleviation policies reduce carbon emissions and increase income in China?</b> <i>Environmental Science & Technology</i> 2023; <b>57</b>(49): 20583-20594.</p><p>Caravella S, Crespi F, Cucignatto G, et al. <b>Technological sovereignty and strategic dependencies: The case of the photovoltaic supply chain.</b> <i>Journal of Cleaner Production</i> 2024; <b>434</b>: 140222.</p><p>Chadly A, Hasan HR, Moawad K, et al. <b>A blockchain-based solution for the traceability of rare earth metals used in thin-film photovoltaics.</b> <i>Journal of Cleaner Production</i> 2023; <b>428</b>: 139399.</p><p>Lu J, Sun Y, Pang S, et al. <b>The crucial role of impurity of photovoltaic silicon waste in dictating the performance of lithium-ion battery anodes.</b> <i>Journal of Cleaner Production</i> 2024; <b>434</b>: 140209.</p><p>Acharya A, Ranjan Verma A, Bolia NB. <b>Effective collection of end-of-life solar panels through an incentive-based model.</b> <i>Solar Energy</i> 2024; <b>268</b>: 112215.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 3","pages":"212-215"},"PeriodicalIF":8.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3773","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3773","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
In order to help readers stay up-to-date in the field, each issue of Progress in Photovoltaics will contain a list of recently published journal articles that are most relevant to its aims and scope. This list is drawn from an extremely wide range of journals, including IEEE Journal of Photovoltaics, Solar Energy Materials and Solar Cells, Renewable Energy, Renewable and Sustainable Energy Reviews, Journal of Applied Physics, and Applied Physics Letters. To assist readers, the list is separated into broad categories, but please note that these classifications are by no means strict. Also note that inclusion in the list is not an endorsement of a paper's quality. If you have any suggestions please email Ziv Hameiri at [email protected].
Vicari Stefani B, Kim M, Zhang Y, et al. Historical market projections and the future of silicon solar cells.Joule 2023; 7(12): 2684-2699.
Zhang CP, Wei K, Hu JF, et al. A review on organic hole transport materials for perovskite solar cells: Structure, composition and reliability.Materials Today 2023; 67: 518-547.
Zhang JX, Chen XY, Wei HK, et al. A lightweight network for photovoltaic cell defect detection in electroluminescence images based on neural architecture search and knowledge distillation.Applied Energy 2024; 355: 122184.
Pan JX, Chen ZM, Zhang TK, et al. Operando dynamics of trapped carriers in perovskite solar cells observed via infrared optical activation spectroscopy.Nature Communications 2023; 14(1): 8000.
Lorenzo E, Moretón R, Solorzano J, et al. On outdoor testing procedures of large samples of PV modules.Progress in Photovoltaics: Research and Applications 2024; 32(1): 14-24.
Grant NE, Pain SL, Khorani E, et al. Activation of Al2O3surface passivation of silicon: Separating bulk and surface effects.Applied Surface Science 2024; 645: 158786.
Yue ZY, Wang GY, Huang ZG, et al. Excellent crystalline silicon surface passivation by transparent conductive Al-doped ZnO/ITO stack.Applied Surface Science 2024; 645: 158845.
Xing C, Jiang C, Gu W, et al. SrFx-based electron-selective contact with high tolerance to thickness for crystalline silicon solar cells enabling efficiency over 21%.Progress in Photovoltaics: Research and Applications 2024; 32(1): 35-44.
Luo HW, Zheng XT, Kong WC, et al. Inorganic framework composition engineering for scalable fabrication of perovskite/silicon tandem solar cells.Acs Energy Letters 2023; 8(12): 4993-5002.
Dipon MNA, Sahriar MA, Sarker S, et al. A comprehensive study of mechanically stacked tandem photovoltaic devices: Materials selection and efficiency analysis using SCAPS.Energy Conversion and Management 2024; 300: 117904.
Mohamad Noh MF, Arzaee NA, Fat CC, et al. Perovskite/CIGS tandem solar cells: progressive advances from technical perspectives.Materials Today Energy 2024; 39: 101473.
Bao Y, Ma T, Ai Z, et al. Insights into efficiency deviation from current-mismatch for tandem photovoltaics.Nano Energy 2024; 120: 109165.
Kang Y, Yoon JW, Lee YK, et al. Density-of-state engineering of conjugated polymers by implanting partial two-dimensional conjugation: Broad absorption and high performing organic photovoltaics.Chemical Engineering Journal 2023; 478: 147250.
Nakano K, Kaji Y, Tajima K. Origin of electric field-dependent charge generation in organic photovoltaics with planar and bulk heterojunctions.Journal of Materials Chemistry A 2023; 11(48): 26499-26507.
Luo X, Freychet G, Gan Z, et al. Intrinsically stretchable organic photovoltaic thin films enabled by optimized donor-acceptor pairing.Macromolecules 2023; 56(21): 8928-8938.
Song W, Ge JF, Xie L, et al. Semi-transparent organic photovoltaics for agrivoltaic applications.Nano Energy 2023; 116: 108805.
Aziz NAS, Rahman MYA, Umar AA, et al. Iridium-palladium binary alloy as a counter electrode in dye-sensitized solar cells.Dalton Transactions 2023; 52(48): 18354-18361.
Jumaah FN, Mustafa NM, Mobarak NN, et al. Bio-based quaternary ammonium salt as an electrolyte for dye-sensitised solar cells.Electrochimica Acta 2023; 472: 143383.
Yan WY, Xiang F, Ou JH, et al. Highly efficient dye-sensitized solar cells achieved by matching energy levels between pseudohalogen redox couples and organic donor- π-acceptor cyanoacrylic acid dyes.Electrochimica Acta 2024; 473: 143522.
Nawghare IS, Singh AK, Maibam A, et al. Steric and electronic effect in unsymmetrical squaraine dyes for dye-sensitized solar cells.Journal of Physical Chemistry C 2023; 127(46): 22473-22488.
Mirzaei M, Gholivand MB. P-doped NiS2/Ni nanoheteroparticles embedded into N-doped carbon framework anchored on multi-walled carbon nanotubes as an efficient counter electrode for Pt-free dye-sensitized solar cells.Materials Today Chemistry 2024; 35: 101862.
Norouzibazaz M, Gholivand MB, Taherpour AA, et al. Experimental and computational investigation of multi-walled carbon nanotubes decorated by Co-Ni-Se@MoSe2core-shell as a sustainable counter electrode for dye-sensitized solar cells.Materials Today Energy 2023; 38: 101447.
Aktas E, Poli I, Ponti C, et al. One-step solution deposition of tin-perovskite onto a self-assembled monolayer with a DMSO-free solvent system.Acs Energy Letters 2023; 8(12): 5170-5174.
Ali W, Qin W, Tian H, et al. Tuning lattice structure of ferroelastic twin-domains achieving efficient perovskite solar cells.Acs Energy Letters 2023; 8(12): 5070-5078.
Park SW, Heo JH, Lee HJ, et al. Compositional design for high-efficiency all-inorganic tin halide perovskite solar cells.Acs Energy Letters 2023; 8(12): 5061-5069.
Wang HS, Yin YF, Xu J, et al. Field-induced transport anisotropy in single-crystalline all-inorganic lead-halide perovskite nanowires.Acs Nano 2023; 17(23): 23671-23678.
Yue Y, Yang R, Zhang W, et al. Cesium cyclopropane acid-aided crystal growth enables efficient inorganic perovskite solar cells with a high moisture tolerance.Angewandte Chemie - International Edition 2024; 63(1): e202315717.
Fan L, Yu M, Hu W, et al. Reducing charge-recombination losses in photovoltaic cells by spontaneous reconstruction of n/p homojunction in a monolithic perovskite film using black phosphorus nanosheets.Chemical Engineering Journal 2024; 479: 147861.
Johnson SA, White KP, Tong J, et al. Improving the barrier properties of tin oxide in metal halide perovskite solar cells using ozone to enhance nucleation.Joule 2023; 7(12): 2873-2893.
Vishnoi P, Rao CNR. Temperature and pressure induced structural transitions of lead iodide perovskites.Journal of Materials Chemistry A 2023; 12(1): 19-37.
Yin Y, Yang L, Zhang X, et al. Pernicious effects and management of lead leakage from perovskite solar cells.Journal of Materials Chemistry A 2023; 11(47): 25825-25848.
Shui QJ, Shan SQ, Zhai YC, et al. Evaporable fullerene indanones with controlled amorphous morphology as electron transport layers for inverted perovskite solar cells.Journal of the American Chemical Society 2023; 145(50): 27307-27315.
Wang Y, Zhou B, Han MDX, et al. Formamidine formate as the multifunctional modulator at buried interface for efficient FAPbI3perovskite solar cells.Nano Energy 2023; 118: 108981.
Yang HC, Cai WS, Wang M, et al. Ultrathin nanolayer constituted by a natural polysaccharide achieves “egg-box” structured SnO2nanoparticles toward efficient and stable perovskite solar cells.Nano Energy 2024; 120: 109111.
Zhang Q, Zhao QQ, Zhang CY, et al. Tailoring the interface by a multifunctional amphiphilic molecule enabled 24.84%-efficiency and stable perovskite solar cells.Nano Energy 2023; 118: 109003.
Liang Z, Zhang Y, Xu H, et al. Homogenizing out-of-plane cation composition in perovskite solar cells.Nature 2023; 624(7992): 557-563.
Dai Z, Padture NP. Challenges and opportunities for the mechanical reliability of metal halide perovskites and photovoltaics.Nature Energy 2023; 8(12): 1319-1327.
Mandal TN, Heo JH, Im SH, et al. Green method to prepare pure δ-FAPbI3crystals for fabrication of highly efficient perovskite solar cells.Solar RRL 2023; 7(21): 2300496.
Zhao Y, Zheng S, Zhao Y, et al. Proton radiation hardness and its loss mechanism of Cu2ZnSn(S,Se)4thin film solar cells.Applied Physics Letters 2023; 123(23): 233901.
Zhao Y, Zhao J, Chen X, et al. Suppressing surface and bulk effect enables high efficiency solution-processed kesterite solar cells.Chemical Engineering Journal 2024; 479: 147739.
Cai X, Wei SH. Perspective on defect control in semiconductors for photovoltaics.Journal of Applied Physics 2023; 134(22): 220901.
Colombara D, Stanbery BJ, Sozzi G. Revani diffusion model in Cu(In,Ga)Se2. Journal of Materials Chemistry A 2023; 11(48): 26426-26434.
Menda UD, Ribeiro G, Deuermeier J, et al. Thermal-carrier-escape mitigation in a quantum-dot-in-perovskite intermediate band solar cell via bandgap engineering.Acs Photonics 2023; 10(10): 3647-3655.
Welser RE, Polly SJ, Bogner BM, et al. Impact of well number on high-efficiency strain-balanced quantum-well solar cells.IEEE Journal of Photovoltaics 2023; 13(1): 61-69.
Yang WY, Zhang XB, Chen ZM, et al. Improvement of radiation resistance of GaInP/GaInAs/Ge triple-junction solar cell with GaInAs/GaAsP quantum wells.Japanese Journal of Applied Physics 2024; 63(1): 011001.
Yu M, Kuang X, Tian H, et al. Laser-driven insulator-metal phase transitions in CsPbI3quantum dots and influence of doped metal nanowires.Journal of Physical Chemistry Letters 2023; 14(44): 10012-10018.
Dehingia A, Das U, Mandal D, et al. Application of Ti3C2TxMXene nanosheets and quantum-dots in halide perovskite solar cells.Materials Today Sustainability 2024; 25: 100619.
Wang L, Chen Y, Lai Y, et al. Highly efficient and stable tandem luminescent solar concentrators based on carbon dots and CuInSe2−xSx/ZnS quantum dots.Nanoscale 2023; 16(1): 188-194.
Li X, Dong X, Ye Y. An interaction model applied to optimize photovoltaic farm location: A case study of China.Applied Energy 2024; 356: 122421.
Ma C, Xu X, Pang X, et al. Scenario-based ultra-short-term rolling optimal operation of a photovoltaic-energy storage system under forecast uncertainty.Applied Energy 2024; 356: 122425.
Willockx B, Reher T, Lavaert C, et al. Design and evaluation of an agrivoltaic system for a pear orchard.Applied Energy 2024; 353: 122166.
Dong XJ, Shen JN, Liu CW, et al. Simultaneous capacity configuration and scheduling optimization of an integrated electrical vehicle charging station with photovoltaic and battery energy storage system.Energy 2024; 289: 129991.
Ali U, Bano S, Shamsi MH, et al. Urban building energy performance prediction and retrofit analysis using data-driven machine learning approach.Energy and Buildings 2024; 303: 113768.
Ernst M, Liu X, Asselineau CA, et al. Accurate modelling of the bifacial gain potential of rooftop solar photovoltaic systems.Energy Conversion and Management 2024; 300: 117947.
Liu YP, Li HY, Li L, et al. A new electrostatic dust removal method using carbon nanotubes transparent conductive film for sustainable operation of solar photovoltaic panels.Energy Conversion and Management 2024; 300: 117923.
Khan UA, Khan NM, Zafar MH. Resource efficient PV power forecasting: Transductive transfer learning based hybrid deep learning model for smart grid in Industry 5.0.Energy Conversion and Management: X 2023; 20: 100486.
Zaki M, Shahin A, Eskander S, et al. Maximizing photovoltaic system power output with a master-slave strategy for parallel inverters.Energy Reports 2024; 11: 567-579.
Sharma M, Pareek S, Singh K. An efficient power extraction using artificial intelligence based machine learning model for SPV array reconfiguration in solar industries.Engineering Applications of Artificial Intelligence 2024; 129: 107516.
Tang Y, Yang K, Zhang S, et al. Photovoltaic power forecasting: A dual-attention gated recurrent unit framework incorporating weather clustering and transfer learning strategy.Engineering Applications of Artificial Intelligence 2024; 130: 107691.
Alam H, Alam MA, Butt NZ. Techno economic modeling for agrivoltaics: Can agrivoltaics be more profitable than ground mounted PV?IEEE Journal of Photovoltaics 2023; 13(1): 174-186.
Wang X, Wen H, Chu G, et al. Performance quantization and comparative assessment of voltage equalizers in mismatched photovoltaic differential power processing systems.IEEE Transactions on Power Electronics 2024; 39(1): 1656-1675.
Bing J, McKenzie DR, Stals T, et al. Total equivalent energy efficiency metric for building-integrated photovoltaic windows.Joule 2023; 7(12): 2668-2683.
Kayri İ, Bayar MT. A new approach to determine the long-term effect of efficiency losses due to different dust types accumulation on PV modules with artificial neural networks.Journal of Cleaner Production 2024; 434: 140282.
Muñoz-Cerón E, Moreno-Buesa S, Leloux J, et al. Evaluation of the bifaciality coefficient of bifacial photovoltaic modules under real operating conditions.Journal of Cleaner Production 2024; 434: 139807.
Calcabrini A, Muttillo M, Zeman M, et al. Electrical performance of a fully reconfigurable series-parallel photovoltaic module.Nature Communications 2023; 14(1): 8113.
Khan MZ, Willers G, Alowais AA, et al. Soiling mitigation potential of glass coatings and tracker routines in the desert climate of Saudi Arabia.Progress in Photovoltaics: Research and Applications 2024; 32(1): 45-55.
Fang X, Yang Q. Dynamic reconfiguration of photovoltaic array for minimizing mismatch loss.Renewable and Sustainable Energy Reviews 2024; 191: 114160.
Liu W, Xu B, Liu Y, et al. A field-function methodology predicting the service lifetime of photovoltaic modules.Renewable and Sustainable Energy Reviews 2024; 192: 114266.
Rodrigo PM, Mouhib E, Fernandez EF, et al. Comprehensive ground coverage analysis of large-scale fixed-tilt bifacial photovoltaic plants.Renewable and Sustainable Energy Reviews 2024; 192: 114229.
Alkharusi T, Huang G, Markides CN. Characterisation of soiling on glass surfaces and their impact on optical and solar photovoltaic performance.Renewable Energy 2024; 220: 119422.
Jiao X, Li X, Yang Y, et al. Novel and comprehensive approach for power loss estimation of soiled photovoltaic modules.Solar Energy 2024; 268: 112283.
Wan L, Zhao L, Xu W, et al. Dust deposition on the photovoltaic panel: A comprehensive survey on mechanisms, effects, mathematical modeling, cleaning methods, and monitoring systems.Solar Energy 2024; 268: 112300.
Ryland M, He W. Holistic analysis of consumer energy decarbonisation options and tariff effects.Applied Energy 2024; 353: 122165.
Al-Quraan A, Al-Mhairat B. Sizing and energy management of standalone hybrid renewable energy systems based on economic predictive control.Energy Conversion and Management 2024; 300: 117948.
Xiuchun W, Xuedong H, Xiaoqian S, et al. The diffusion path of distributed photovoltaic power generation technology driven by individual behavior.Energy Reports 2024; 11: 651-658.
Sheng CH, Liu JL. A systematic analysis of stakeholder interaction and the barriers towards upscaling urban residential solar PV: The case of Shanghai, China.Energy Strategy Reviews 2023; 50: 101259.
Zhou Y, Wang H, Liu Z, et al. Can Solar photovoltaic poverty alleviation policies reduce carbon emissions and increase income in China?Environmental Science & Technology 2023; 57(49): 20583-20594.
Caravella S, Crespi F, Cucignatto G, et al. Technological sovereignty and strategic dependencies: The case of the photovoltaic supply chain.Journal of Cleaner Production 2024; 434: 140222.
Chadly A, Hasan HR, Moawad K, et al. A blockchain-based solution for the traceability of rare earth metals used in thin-film photovoltaics.Journal of Cleaner Production 2023; 428: 139399.
Lu J, Sun Y, Pang S, et al. The crucial role of impurity of photovoltaic silicon waste in dictating the performance of lithium-ion battery anodes.Journal of Cleaner Production 2024; 434: 140209.
Acharya A, Ranjan Verma A, Bolia NB. Effective collection of end-of-life solar panels through an incentive-based model.Solar Energy 2024; 268: 112215.
为了帮助读者了解该领域的最新进展,每期《光伏进展》都会列出一份最近发表的与其目标和范围最相关的期刊文章清单。这份清单选自极为广泛的期刊,包括《IEEE 光伏学报》、《太阳能材料和太阳能电池》、《可再生能源》、《可再生和可持续能源评论》、《应用物理学报》和《应用物理快报》。为了帮助读者,本列表分为几大类,但请注意,这些分类并不严格。同时请注意,列入列表并不代表对论文质量的认可。如果您有任何建议,请发送电子邮件至 [email protected] 联系 Ziv Hameiri。Joule 2023; 7(12):Zhang CP, Wei K, Hu JF, et al:结构、组成和可靠性。Zhang JX, Chen XY, Wei HK, et al. A lightweight network for photovoltaic cell defect detection in electroluminescence images based on neural architecture search and knowledge distillation.Pan JX, Chen ZM, Zhang TK, et al.自然通讯 2023; 14(1):Lorenzo E, Moretón R, Solorzano J, et al.光伏技术进展:研究与应用 2024; 32(1):14-24.Grant NE, Pain SL, Khorani E, et al:分离块体和表面效应。Yue ZY, Wang GY, Huang ZG, et al.Xing C, Jiang C, Gu W, et al. SrFx-based electron-selective contact with high tolerance to thickness for crystalline silicon solar cells enabling efficiency over 21%.光伏技术进展:35-44.Luo HW, et al:Luo HW, Zheng XT, Kong WC, et al.Acs Energy Letters 2023; 8(12):Dipon MNA, Sahriar MA, Sarker S, et al:使用 SCAPS 进行材料选择和效率分析。Mohamad Noh MF, Arzaee NA, Fat CC, et al. Perovskite/CIGS tandem solar cells: progressive advances from technical perspectives.Bao Y, Ma T, Ai Z, et al. Insights into efficiency deviation from current-mismatch for tandem photovoltaics.Kang Y, Yoon JW, Lee YK, et al:宽吸收和高性能有机光伏。Nakano K, Kaji Y, Tajima K. Origin of electric field-dependent charge generation in organic photovoltaics with planar and bulk heterojunctions.材料化学杂志 A 2023; 11(48):Luo X, Freychet G, Gan Z, et al.大分子 2023; 56(21):Song W, Ge JF, Xie L, et al.Nano Energy 2023; 116: 108805.Aziz NAS, Rahman MYA, Umar AA, et al. Iridium-palladium binary alloy as a counter electrode in dye-sensitized solar cells.Dalton Transactions 2023; 52(48):Jumaah FN, Mustafa NM, Mobarak NN, et al.Electrochimica Acta 2023; 472: 143383.Yan WY, Xiang F, Ou JH, et al. 通过匹配假卤素氧化还原偶和有机供体-π-受体氰基丙烯酸染料之间的能级实现的高效染料敏化太阳能电池。Electrochimica Acta 2024; 473: 143522.Nawghare IS, Singh AK, Maibam A, et al.物理化学杂志 C 2023; 127(46):22473-22488.Mirzaei M, Gholivand MB.嵌入锚定在多壁碳纳米管上的 N 掺杂碳框架中的 P 掺杂 NiS2/Ni 纳米异质颗粒作为无铂染料敏化太阳能电池的高效对电极。Norouzibazaz M, Gholivand MB, Taherpour AA, et al. Co-Ni-Se@MoSe2 核壳装饰的多壁碳纳米管作为染料敏化太阳能电池可持续对电极的实验和计算研究。Materials Today Energy 2023; 38: 101447. Aktas E, Poli I, Ponti C, et al. 使用不含二甲基亚砜的溶剂系统在自组装单层上一步沉积锡-超长晶石。Acs Energy Letters 2023; 8(12):Ali W, Qin W, Tian H, et al.Acs Energy Letters 2023; 8(12):Park SW, Heo JH, Lee HJ, et al.Acs Energy Letters 2023; 8(12):5061-5069.Wang HS, Yin YF, Xu J, et al. Field-induced transport anisotropy in single-crystalline all-inorganic lead-halide perovskite nanowires.Acs Nano 2023; 17(23):Yue Y, Yang R, Zhang W, et al. Cesium cyclopropane acid-aided crystal growth enables efficient inorganic perovskite solar cells with a high moisture tolerance.Fan L, Yu M, Hu W, et al. Reducing charge-recombination losses in photovoltaic cells by spontaneous reconstruction of n/p homojunction in a monolithic perovskite film using black phosphorus nanosheet.Johnson SA, White KP, Tong J, et al.Joule 2023; 7(12):2873-2893.Vishnoi P, Rao CNR.碘化铅包晶石的温度和压力诱导结构转变。材料化学杂志 A 2023; 12(1):19-37.Yin Y, Yang L, Zhang X, et al.材料化学学报 A 2023; 11(47):Shui QJ, Shan SQ, Zhai YC, et al. Evaporable fullerene indanones with controlled amorphous morphology as electron transport layers for inverted perovskite solar cells.美国化学学会学报》,2023;145(50):Wang Y, Zhou B, Han MDX, et al. Formamidine formate as the multifunctional modulator at buried interface for efficient FAPbI3 perovskite solar cells.Yang HC, Cai WS, Wang M, et al.纳米能源 2024; 120: 109111.Zhang Q, Zhao QQ, Zhang CY, et al.Nano Energy 2023; 118: 109003.Liang Z, Zhang Y, Xu H, et al.自然 2023; 624(7992):557-563.Dai Z, Padture NP.金属卤化物过氧化物和光伏的机械可靠性面临的挑战和机遇。自然-能源 2023; 8(12):1319-1327.Mandal TN, Heo JH, Im SH, et al. Green method to prepare pure δ-FAPbI3 crystals for the fabrication of highly efficient perovskite solar cells.Zhao Y, Zheng S, Zhao Y, et al. Proton radiation hardness and its loss mechanism of Cu2ZnSn(S,Se)4 thin film solar cells.应用物理快报 2023; 123(23):Zhao Y, Zhao J, Chen X, et al.化学工程学报 2024; 479: 147739.Cai X, Wei SH.光伏半导体缺陷控制透视。应用物理学报 2023; 134(22): 220901.Colombara D, Stanbery BJ, Sozzi G.Cu(In,Ga)Se2 中的 Revani 扩散模型。材料化学杂志 A 2023; 11(48):Menda UD, Ribeiro G, Deuermeier J, et al.Acs Photonics 2023; 10(10):Welser RE, Polly SJ, Bogner BM, et al.IEEE Journal of Photovoltaics 2023; 13(1):Yang WY, Zhang XB, Chen ZM, et al.日本应用物理学杂志,2024;63(1):011001.Yu M, Kuang X, Tian H, et al. 激光驱动的 CsPbI3 量子点中绝缘体-金属相变及掺杂金属纳米线的影响。物理化学通讯》杂志 2023; 14(44):Dehingia A, Das U, Mandal D, et al. Ti3C2Tx MXene 纳米片和量子点在卤化物过氧化物太阳能电池中的应用。Wang L, Chen Y, Lai Y, et al. Highly efficient and stable tandem luminescent solar concentrators based on carbon dots and CuInSe2-xSx/ZnS quantum dots.Nanoscale 2023; 16(1):188-194.Li X, Dong X, Ye Y. An interaction model applied to optimize photovoltaic farm location:中国案例研究。Applied Energy 2024; 356: 122421.Ma C, Xu X, Pang X, et al.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.