{"title":"A Taxonomy for Learning with Perturbation and Algorithms","authors":"Rujing Yao, Ou Wu","doi":"10.1145/3644391","DOIUrl":null,"url":null,"abstract":"<p>Weighting strategy prevails in machine learning. For example, a common approach in robust machine learning is to exert low weights on samples which are likely to be noisy or quite hard. This study summarizes another less-explored strategy, namely, perturbation. Various incarnations of perturbation have been utilized but it has not been explicitly revealed. Learning with perturbation is called perturbation learning and a systematic taxonomy is constructed for it in this study. In our taxonomy, learning with perturbation is divided on the basis of the perturbation targets, directions, inference manners, and granularity levels. Many existing learning algorithms including some classical ones can be understood with the constructed taxonomy. Alternatively, these algorithms share the same component, namely, perturbation in their procedures. Furthermore, a family of new learning algorithms can be obtained by varying existing learning algorithms with our taxonomy. Specifically, three concrete new learning algorithms are proposed for robust machine learning. Extensive experiments on image classification and text sentiment analysis verify the effectiveness of the three new algorithms. Learning with perturbation can also be used in other various learning scenarios, such as imbalanced learning, clustering, regression, and so on.</p>","PeriodicalId":49249,"journal":{"name":"ACM Transactions on Knowledge Discovery from Data","volume":"218 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Knowledge Discovery from Data","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/3644391","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Weighting strategy prevails in machine learning. For example, a common approach in robust machine learning is to exert low weights on samples which are likely to be noisy or quite hard. This study summarizes another less-explored strategy, namely, perturbation. Various incarnations of perturbation have been utilized but it has not been explicitly revealed. Learning with perturbation is called perturbation learning and a systematic taxonomy is constructed for it in this study. In our taxonomy, learning with perturbation is divided on the basis of the perturbation targets, directions, inference manners, and granularity levels. Many existing learning algorithms including some classical ones can be understood with the constructed taxonomy. Alternatively, these algorithms share the same component, namely, perturbation in their procedures. Furthermore, a family of new learning algorithms can be obtained by varying existing learning algorithms with our taxonomy. Specifically, three concrete new learning algorithms are proposed for robust machine learning. Extensive experiments on image classification and text sentiment analysis verify the effectiveness of the three new algorithms. Learning with perturbation can also be used in other various learning scenarios, such as imbalanced learning, clustering, regression, and so on.
期刊介绍:
TKDD welcomes papers on a full range of research in the knowledge discovery and analysis of diverse forms of data. Such subjects include, but are not limited to: scalable and effective algorithms for data mining and big data analysis, mining brain networks, mining data streams, mining multi-media data, mining high-dimensional data, mining text, Web, and semi-structured data, mining spatial and temporal data, data mining for community generation, social network analysis, and graph structured data, security and privacy issues in data mining, visual, interactive and online data mining, pre-processing and post-processing for data mining, robust and scalable statistical methods, data mining languages, foundations of data mining, KDD framework and process, and novel applications and infrastructures exploiting data mining technology including massively parallel processing and cloud computing platforms. TKDD encourages papers that explore the above subjects in the context of large distributed networks of computers, parallel or multiprocessing computers, or new data devices. TKDD also encourages papers that describe emerging data mining applications that cannot be satisfied by the current data mining technology.