Continuous-wave operation of 1550 nm low-threshold triple-lattice photonic-crystal surface-emitting lasers.

IF 19.4 1区 物理与天体物理 Q1 Physics and Astronomy Light, science & applications Pub Date : 2024-02-05 DOI:10.1038/s41377-024-01387-4
Ziye Wang, Xia Liu, Pinyao Wang, Huanyu Lu, Bo Meng, Wei Zhang, Lijie Wang, Yanjing Wang, Cunzhu Tong
{"title":"Continuous-wave operation of 1550 nm low-threshold triple-lattice photonic-crystal surface-emitting lasers.","authors":"Ziye Wang, Xia Liu, Pinyao Wang, Huanyu Lu, Bo Meng, Wei Zhang, Lijie Wang, Yanjing Wang, Cunzhu Tong","doi":"10.1038/s41377-024-01387-4","DOIUrl":null,"url":null,"abstract":"<p><p>Benefitting from narrow beam divergence, photonic crystal surface-emitting lasers are expected to play an essential role in the ever-growing fields of optical communication and light detection and ranging. Lasers operating with 1.55 μm wavelengths have attracted particular attention due to their minimum fiber loss and high eye-safe threshold. However, high interband absorption significantly decreases their performance at this 1.55 μm wavelength. Therefore, stronger optical feedback is needed to reduce their threshold and thus improve the output power. Toward this goal, photonic-crystal resonators with deep holes and high dielectric contrast are often used. Nevertheless, the relevant techniques for high-contrast photonic crystals inevitably complicate fabrication and reduce the final yield. In this paper, we demonstrate the first continuous-wave operation of 1.55 μm photonic-crystal surface-emitting lasers by using a 'triple-lattice photonic-crystal resonator', which superimposes three lattice point groups to increase the strength of in-plane optical feedback. Using this geometry, the in-plane 180° coupling can be enhanced threefold compared to the normal single-lattice structure. Detailed theoretical and experimental investigations demonstrate the much lower threshold current density of this structure compared to 'single-lattice' and 'double-lattice' photonic-crystal resonators, verifying our design principles. Our findings provide a new strategy for photonic crystal laser miniaturization, which is crucial for realizing their use in future high-speed applications.</p>","PeriodicalId":18093,"journal":{"name":"Light, science & applications","volume":"13 1","pages":"44"},"PeriodicalIF":19.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11251162/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Light, science & applications","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41377-024-01387-4","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Benefitting from narrow beam divergence, photonic crystal surface-emitting lasers are expected to play an essential role in the ever-growing fields of optical communication and light detection and ranging. Lasers operating with 1.55 μm wavelengths have attracted particular attention due to their minimum fiber loss and high eye-safe threshold. However, high interband absorption significantly decreases their performance at this 1.55 μm wavelength. Therefore, stronger optical feedback is needed to reduce their threshold and thus improve the output power. Toward this goal, photonic-crystal resonators with deep holes and high dielectric contrast are often used. Nevertheless, the relevant techniques for high-contrast photonic crystals inevitably complicate fabrication and reduce the final yield. In this paper, we demonstrate the first continuous-wave operation of 1.55 μm photonic-crystal surface-emitting lasers by using a 'triple-lattice photonic-crystal resonator', which superimposes three lattice point groups to increase the strength of in-plane optical feedback. Using this geometry, the in-plane 180° coupling can be enhanced threefold compared to the normal single-lattice structure. Detailed theoretical and experimental investigations demonstrate the much lower threshold current density of this structure compared to 'single-lattice' and 'double-lattice' photonic-crystal resonators, verifying our design principles. Our findings provide a new strategy for photonic crystal laser miniaturization, which is crucial for realizing their use in future high-speed applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
1550 nm 低阈值三晶格光子晶体表面发射激光器的连续波操作。
光子晶体表面发射激光器得益于窄光束发散,有望在不断发展的光通信和光探测与测距领域发挥重要作用。波长为 1.55 μm 的激光器因其最小的光纤损耗和较高的护眼阈值而备受关注。然而,高带间吸收大大降低了 1.55 μm 波长的性能。因此,需要更强的光反馈来降低其阈值,从而提高输出功率。为了实现这一目标,通常会使用具有深孔和高介电对比度的光子晶体谐振器。然而,高对比度光子晶体的相关技术不可避免地会使制造复杂化,并降低最终产量。在本文中,我们利用 "三晶格光子晶体谐振器 "首次展示了 1.55 μm 光子晶体面发射激光器的连续波操作。"三晶格光子晶体谐振器 "叠加了三个晶格点群,以增加面内光反馈的强度。与普通单晶格结构相比,使用这种几何结构可将面内 180° 耦合增强三倍。详细的理论和实验研究表明,与 "单晶格 "和 "双晶格 "光子晶体谐振器相比,这种结构的阈值电流密度要低得多,从而验证了我们的设计原则。我们的发现为光子晶体激光器的微型化提供了一种新策略,这对于实现其在未来高速应用中的应用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
27.00
自引率
2.60%
发文量
331
审稿时长
20 weeks
期刊介绍: Light: Science & Applications is an open-access, fully peer-reviewed publication.It publishes high-quality optics and photonics research globally, covering fundamental research and important issues in engineering and applied sciences related to optics and photonics.
期刊最新文献
Research progress on aero-optical effects of hypersonic optical window with film cooling. Highly-efficient (>70%) and Wide-spectral (400-1700 nm) sub-micron-thick InGaAs photodiodes for future high-resolution image sensors. Extended-depth of field random illumination microscopy, EDF-RIM, provides super-resolved projective imaging. Publisher Correction: Photon shifting and trapping in perovskite solar cells for improved efficiency and stability. Electrically tunable planar liquid-crystal singlets for simultaneous spectrometry and imaging.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1