TN-MR: topic-aware neural network-based mobile application recommendation

IF 4.7 Q2 MATERIALS SCIENCE, BIOMATERIALS ACS Applied Bio Materials Pub Date : 2024-02-06 DOI:10.1108/ijwis-10-2023-0205
Junyi Chen, Buqing Cao, Zhenlian Peng, Ziming Xie, Shanpeng Liu, Qian Peng
{"title":"TN-MR: topic-aware neural network-based mobile application recommendation","authors":"Junyi Chen, Buqing Cao, Zhenlian Peng, Ziming Xie, Shanpeng Liu, Qian Peng","doi":"10.1108/ijwis-10-2023-0205","DOIUrl":null,"url":null,"abstract":"\nPurpose\nWith the increasing number of mobile applications, efficiently recommending mobile applications to users has become a challenging problem. Although existing mobile application recommendation approaches based on user attributes and behaviors have achieved notable effectiveness, they overlook the diffusion patterns and interdependencies of topic-specific mobile applications among user groups. mobile applications among user groups. This paper aims to capture the diffusion patterns and interdependencies of mobile applications among user groups. To achieve this, a topic-aware neural network-based mobile application recommendation method, referred to as TN-MR, is proposed.\n\n\nDesign/methodology/approach\nIn this method, first, the user representations are enhanced by introducing a topic-aware attention layer, which captures both the topic context and the diffusion history context. Second, it exploits a time-decay mechanism to simulate changes in user interest. Multitopic user representations are aggregated by the time decay module to output the user representations of cascading representations under multiple topics. Finally, user scores that are likely to download the mobile application are predicted and ranked.\n\n\nFindings\nExperimental comparisons and analyses were conducted on the actual 360App data set, and the results demonstrate that the effectiveness of mobile application recommendations can be significantly improved by using TN-MR.\n\n\nOriginality/value\nIn this paper, the authors propose a mobile application recommendation method based on topic-aware attention networks. By capturing the diffusion patterns and dependencies of mobile applications, it effectively assists users in selecting their applications of interest from thousands of options, significantly improving the accuracy of mobile application recommendations.\n","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":"54 9","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1108/ijwis-10-2023-0205","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose With the increasing number of mobile applications, efficiently recommending mobile applications to users has become a challenging problem. Although existing mobile application recommendation approaches based on user attributes and behaviors have achieved notable effectiveness, they overlook the diffusion patterns and interdependencies of topic-specific mobile applications among user groups. mobile applications among user groups. This paper aims to capture the diffusion patterns and interdependencies of mobile applications among user groups. To achieve this, a topic-aware neural network-based mobile application recommendation method, referred to as TN-MR, is proposed. Design/methodology/approach In this method, first, the user representations are enhanced by introducing a topic-aware attention layer, which captures both the topic context and the diffusion history context. Second, it exploits a time-decay mechanism to simulate changes in user interest. Multitopic user representations are aggregated by the time decay module to output the user representations of cascading representations under multiple topics. Finally, user scores that are likely to download the mobile application are predicted and ranked. Findings Experimental comparisons and analyses were conducted on the actual 360App data set, and the results demonstrate that the effectiveness of mobile application recommendations can be significantly improved by using TN-MR. Originality/value In this paper, the authors propose a mobile application recommendation method based on topic-aware attention networks. By capturing the diffusion patterns and dependencies of mobile applications, it effectively assists users in selecting their applications of interest from thousands of options, significantly improving the accuracy of mobile application recommendations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
TN-MR:基于主题感知神经网络的移动应用推荐
目的随着移动应用数量的不断增加,向用户有效推荐移动应用已成为一个具有挑战性的问题。尽管现有的基于用户属性和行为的移动应用推荐方法取得了显著成效,但它们忽略了特定主题移动应用在用户群体中的扩散模式和相互依赖关系。本文旨在捕捉移动应用在用户群中的传播模式和相互依存关系。为此,本文提出了一种基于主题感知神经网络的移动应用推荐方法(简称 TN-MR)。在该方法中,首先,通过引入主题感知关注层来增强用户表征,该层可捕捉主题上下文和扩散历史上下文。其次,它利用时间衰减机制来模拟用户兴趣的变化。多主题用户表征由时间衰减模块汇总,以输出多个主题下层叠表征的用户表征。研究结果在 360App 实际数据集上进行了实验对比和分析,结果表明,使用 TN-MR 可以显著提高移动应用推荐的有效性。通过捕捉移动应用的扩散模式和依赖关系,它能有效地帮助用户从成千上万个选项中选择自己感兴趣的应用,从而显著提高移动应用推荐的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
ACS Applied Bio Materials
ACS Applied Bio Materials Chemistry-Chemistry (all)
CiteScore
9.40
自引率
2.10%
发文量
464
期刊介绍: ACS Applied Bio Materials is an interdisciplinary journal publishing original research covering all aspects of biomaterials and biointerfaces including and beyond the traditional biosensing, biomedical and therapeutic applications. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrates knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important bio applications. The journal is specifically interested in work that addresses the relationship between structure and function and assesses the stability and degradation of materials under relevant environmental and biological conditions.
期刊最新文献
Decellularized Dermis ECM-Based Melanoma-on-a-Chip Model with Integrated Lymphatic and Vascular Networks for High-Throughput Drug Testing. Physically Cross-Linked Hydrogels Based on Poly(vinyl alcohol) and Gelatin for Independent Modulation of Mechanical Cues in Cell Adhesion Studies. Photobiomodulation Therapy with Zinc Oxide/Pheophorbide-a Nanoflakes Enhances Neurovascular Repair in Spinal Cord Injury Evidenced Using Photoacoustic Imaging. DNA-Templated Silver Nanoclusters Demonstrate Potent Antimicrobial Activity Against the Clinically Relevant Pathogens, Neisseria meningitidis and Streptococcus pneumoniae. Repurposing of Near-Infrared IR 808: A Promising Agent for the Treatment of Gram-Positive Bacteria Induced Endophthalmitis.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1