LSTM Neural Networks Using the SMOTE Algorithm for Wind Turbine Fault Prediction

Júlio Oliveira Schmidt, Lucas França Aires, G. R. Hubner, Humberto Pinheiro, Daniel Fernando Tello Gamarra
{"title":"LSTM Neural Networks Using the SMOTE Algorithm for Wind Turbine Fault Prediction","authors":"Júlio Oliveira Schmidt, Lucas França Aires, G. R. Hubner, Humberto Pinheiro, Daniel Fernando Tello Gamarra","doi":"10.1115/1.4064375","DOIUrl":null,"url":null,"abstract":"\n This work proposes a method using a long short-term memory neural network as a diagnostic tool to detect wind turbine rotor mass imbalance. The method uses the synthetic minority oversampling technique for data augmentation in an unbalanced dataset. For this purpose, a 1.5 MW three-bladed wind turbine model was simulated at Turbsim, FAST, and Matlab Simulink to generate rotor speed data for different scenarios, simulating different wind speeds and creating a mass imbalance by changing the density of the blades in the software. Features extraction and power spectral density were also used to improve the Neural Network results. The results were compared to nine different classifiers with four different combinations of datasets and demonstrated that the technique is promising for mass imbalance detection.","PeriodicalId":504755,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering","volume":"46 43","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064375","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This work proposes a method using a long short-term memory neural network as a diagnostic tool to detect wind turbine rotor mass imbalance. The method uses the synthetic minority oversampling technique for data augmentation in an unbalanced dataset. For this purpose, a 1.5 MW three-bladed wind turbine model was simulated at Turbsim, FAST, and Matlab Simulink to generate rotor speed data for different scenarios, simulating different wind speeds and creating a mass imbalance by changing the density of the blades in the software. Features extraction and power spectral density were also used to improve the Neural Network results. The results were compared to nine different classifiers with four different combinations of datasets and demonstrated that the technique is promising for mass imbalance detection.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用 SMOTE 算法的 LSTM 神经网络用于风力涡轮机故障预测
本研究提出了一种使用长短期记忆神经网络作为诊断工具来检测风力涡轮机转子质量不平衡的方法。该方法在不平衡数据集中使用合成少数超采样技术进行数据扩增。为此,在 Turbsim、FAST 和 Matlab Simulink 中模拟了 1.5 兆瓦三叶片风力涡轮机模型,以生成不同场景下的转子速度数据,模拟不同的风速,并通过改变软件中叶片的密度来产生质量失衡。特征提取和功率谱密度也用于改进神经网络的结果。利用四种不同的数据集组合,将结果与九种不同的分类器进行了比较,结果表明该技术在质量失衡检测方面大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Uncertainty-Aware, Structure-Preserving Machine Learning Approach for Domain Shift Detection From Nonlinear Dynamic Responses of Structural Systems Random Dynamic Responses of Two Parallel Interfacial Cracks Between A Functionally Graded Material Strip And Two Dissimilar Elastic Strips Bayesian Model Updating of Multiscale Simulations Informing Corrosion Prognostics Using Conditional Invertible Neural Networks Deep Learning-Based Multi-Fidelity Surrogate Modeling for High Dimensional Reliability Prediction Special Issue on Probabilistic Digital Twins in Additive Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1