Divager Balasubramaniyan, N. Husin, N. Mustapha, N. Sharef, T.N. Mohd Aris
{"title":"Flock Optimization Algorithm-Based Deep Learning Model for Diabetic Disease Detection Improvement","authors":"Divager Balasubramaniyan, N. Husin, N. Mustapha, N. Sharef, T.N. Mohd Aris","doi":"10.3844/jcssp.2024.168.180","DOIUrl":null,"url":null,"abstract":": Worldwide, 422 million people suffer from diabetic disease, and 1.5 million die yearly. Diabetes is a threat to people who still fail to cure or maintain it, so it is challenging to predict this disease accurately. The existing systems face data over-fitting issues, convergence problems, non-converging optimization complex predictions, and latent and predominant feature extraction. These issues affect the system's performance and reduce diabetic disease detection accuracy. Hence, the research objective is to create an improved diabetic disease detection system using a Flock Optimization Algorithm-Based Deep Learning Model (FOADLM) feature modeling approach that leverages the PIMA Indian dataset to predict and classify diabetic disease cases. The collected data is processed by a Gaussian filtering approach that eliminates irrelevant information, reducing the overfitting issues. Then flock optimization algorithm is applied to detect the sequence; this process is used to reduce the convergence and optimization problems. Finally, the recurrent neural approach is applied to classify the normal and abnormal features. The entire research implementation result is carried out with the help of the MATLAB program and the results are analyzed with accuracy, precision, recall, computational time, reliability scalability, and error rate measures like root mean square error, mean square error, and correlation coefficients. In conclusion, the system evaluation result produced 99.23% accuracy in predicting diabetic disease with the metrics.","PeriodicalId":40005,"journal":{"name":"Journal of Computer Science","volume":"33 23","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3844/jcssp.2024.168.180","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
: Worldwide, 422 million people suffer from diabetic disease, and 1.5 million die yearly. Diabetes is a threat to people who still fail to cure or maintain it, so it is challenging to predict this disease accurately. The existing systems face data over-fitting issues, convergence problems, non-converging optimization complex predictions, and latent and predominant feature extraction. These issues affect the system's performance and reduce diabetic disease detection accuracy. Hence, the research objective is to create an improved diabetic disease detection system using a Flock Optimization Algorithm-Based Deep Learning Model (FOADLM) feature modeling approach that leverages the PIMA Indian dataset to predict and classify diabetic disease cases. The collected data is processed by a Gaussian filtering approach that eliminates irrelevant information, reducing the overfitting issues. Then flock optimization algorithm is applied to detect the sequence; this process is used to reduce the convergence and optimization problems. Finally, the recurrent neural approach is applied to classify the normal and abnormal features. The entire research implementation result is carried out with the help of the MATLAB program and the results are analyzed with accuracy, precision, recall, computational time, reliability scalability, and error rate measures like root mean square error, mean square error, and correlation coefficients. In conclusion, the system evaluation result produced 99.23% accuracy in predicting diabetic disease with the metrics.
期刊介绍:
Journal of Computer Science is aimed to publish research articles on theoretical foundations of information and computation, and of practical techniques for their implementation and application in computer systems. JCS updated twelve times a year and is a peer reviewed journal covers the latest and most compelling research of the time.