Prediction of ionospheric total electron content data using NARX neural network model

Nayana Shenvi, H.G. Virani
{"title":"Prediction of ionospheric total electron content data using NARX neural network model","authors":"Nayana Shenvi, H.G. Virani","doi":"10.11591/eei.v13i1.6506","DOIUrl":null,"url":null,"abstract":"Successful prediction of ionospheric total electron content (TEC) data will help in correction of positioning errors in global navigation satellite systems (GNSS) caused by the ionosphere. This research paper proposes a prediction model for ionospheric TEC using a nonlinear autoregressive with exogenous inputs (NARX) neural network that utilizes past TEC data alongwith solar and geomagnetic indices namely F10.7, disturbed storm (Dst), Kp, Ap, and time of the day. We assess the prediction capability of our model at different latitudes during different solar activity years. We compare our results with another NARX model which uses previous TEC data along with time of the day, day of the year and season as exogenous parameters. The results show that for the solar minimum year the TEC prediction accuracy improves by 35.71% and for the solar maximum year it improves by 31.20%. The results using root mean square error (RMSE), mean absolute error (MAE), correlation coefficient, and symmetric mean absolute percentage error (sMAPE) clearly indicate that solar and geomagnetic indices along with time of the day help in enhancing prediction accuracy of TEC across different latitudinal regions during both solar minimum and maximum years.","PeriodicalId":502860,"journal":{"name":"Bulletin of Electrical Engineering and Informatics","volume":"6 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bulletin of Electrical Engineering and Informatics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.11591/eei.v13i1.6506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Successful prediction of ionospheric total electron content (TEC) data will help in correction of positioning errors in global navigation satellite systems (GNSS) caused by the ionosphere. This research paper proposes a prediction model for ionospheric TEC using a nonlinear autoregressive with exogenous inputs (NARX) neural network that utilizes past TEC data alongwith solar and geomagnetic indices namely F10.7, disturbed storm (Dst), Kp, Ap, and time of the day. We assess the prediction capability of our model at different latitudes during different solar activity years. We compare our results with another NARX model which uses previous TEC data along with time of the day, day of the year and season as exogenous parameters. The results show that for the solar minimum year the TEC prediction accuracy improves by 35.71% and for the solar maximum year it improves by 31.20%. The results using root mean square error (RMSE), mean absolute error (MAE), correlation coefficient, and symmetric mean absolute percentage error (sMAPE) clearly indicate that solar and geomagnetic indices along with time of the day help in enhancing prediction accuracy of TEC across different latitudinal regions during both solar minimum and maximum years.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用 NARX 神经网络模型预测电离层电子总含量数据
成功预测电离层电子总含量(TEC)数据将有助于纠正电离层造成的全球导航卫星系统(GNSS)定位误差。本研究论文利用非线性自回归外生输入(NARX)神经网络提出了电离层 TEC 预测模型,该模型利用过去的 TEC 数据以及太阳和地磁指数(即 F10.7、扰动风暴(Dst)、Kp、Ap 和一天中的时间)。我们评估了我们的模型在不同太阳活动年不同纬度的预测能力。我们将我们的结果与另一个 NARX 模型进行了比较,后者使用以前的 TEC 数据以及一天中的时间、年份和季节作为外生参数。结果表明,在太阳活动最少的年份,TEC 预测精度提高了 35.71%,在太阳活动最多的年份,提高了 31.20%。使用均方根误差(RMSE)、平均绝对误差(MAE)、相关系数和对称平均绝对百分比误差(sMAPE)得出的结果清楚地表明,太阳和地磁指数以及一天中的时间有助于提高不同纬度地区在太阳最小年和太阳最大年的 TEC 预测精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cross-project software defect prediction through multiple learning Palembang songket fabric motif image detection with data augmentation based on ResNet using dropout Secure map-based crypto-stego technique based on mac address Low insertion loss open-loop resonator–based microstrip diplexer with high selective for wireless applications Autonomous vehicle tracking control for a curved trajectory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1