{"title":"Costimulatory Molecule CD226 Regulates Atopic Dermatitis in a Mouse Model","authors":"","doi":"10.1016/j.jid.2024.01.022","DOIUrl":null,"url":null,"abstract":"<div><p>This study investigated the role of CD226 in a 2,4-dinitrochlorobenzene (DNCB)–induced mouse model of atopic dermatitis. The results showed that the lack of CD226 (global and CD4<sup>+</sup> T-cell specific) significantly increased ear thickness, reddening, swelling, and scaling of the skin as well as inflammatory cell and mast cell infiltration. RT-qPCR results demonstrated that the mRNA expressions of atopic dermatitis–related inflammatory cytokines and chemokines were markedly increased in the draining lymph nodes and lesioned ear skin tissues of global and CD4<sup>+</sup> T-cell–specific CD226-deficient mice compared with that in control mice. In vitro assessment revealed that CD226 directly modulates TGFβ-mediated regulatory T (Treg) cell differentiation and proliferation. Notably, Treg cell–specific deletion of CD226 (<em>Cd226</em><sup>fl/fl</sup><em>Foxp3</em><sup>cre</sup> mice) resulted in more severe dermatitis and epidermal thickening than those observed in littermate mice upon DNCB treatment. Subsequent analysis showed that the infiltration of Treg cells in ear lesions and the number of Tregs in the spleen were significantly reduced in <em>Cd226</em><sup>fl/fl</sup><em>Foxp3</em><sup>cre</sup> mice after DNCB treatment. In addition, the lack of CD226 induced apoptosis of Treg cells through the activation of caspase 3. Therefore, these results suggest that CD226 has potential efficacy in atopic dermatitis, correlating with Treg cell inhibition.</p></div>","PeriodicalId":16311,"journal":{"name":"Journal of Investigative Dermatology","volume":null,"pages":null},"PeriodicalIF":5.7000,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Investigative Dermatology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022202X2400099X","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"DERMATOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study investigated the role of CD226 in a 2,4-dinitrochlorobenzene (DNCB)–induced mouse model of atopic dermatitis. The results showed that the lack of CD226 (global and CD4+ T-cell specific) significantly increased ear thickness, reddening, swelling, and scaling of the skin as well as inflammatory cell and mast cell infiltration. RT-qPCR results demonstrated that the mRNA expressions of atopic dermatitis–related inflammatory cytokines and chemokines were markedly increased in the draining lymph nodes and lesioned ear skin tissues of global and CD4+ T-cell–specific CD226-deficient mice compared with that in control mice. In vitro assessment revealed that CD226 directly modulates TGFβ-mediated regulatory T (Treg) cell differentiation and proliferation. Notably, Treg cell–specific deletion of CD226 (Cd226fl/flFoxp3cre mice) resulted in more severe dermatitis and epidermal thickening than those observed in littermate mice upon DNCB treatment. Subsequent analysis showed that the infiltration of Treg cells in ear lesions and the number of Tregs in the spleen were significantly reduced in Cd226fl/flFoxp3cre mice after DNCB treatment. In addition, the lack of CD226 induced apoptosis of Treg cells through the activation of caspase 3. Therefore, these results suggest that CD226 has potential efficacy in atopic dermatitis, correlating with Treg cell inhibition.
期刊介绍:
Journal of Investigative Dermatology (JID) publishes reports describing original research on all aspects of cutaneous biology and skin disease. Topics include biochemistry, biophysics, carcinogenesis, cell regulation, clinical research, development, embryology, epidemiology and other population-based research, extracellular matrix, genetics, immunology, melanocyte biology, microbiology, molecular and cell biology, pathology, percutaneous absorption, pharmacology, photobiology, physiology, skin structure, and wound healing