{"title":"Data-driven multiscale computational models of cortical and subcortical regions","authors":"Srikanth Ramaswamy","doi":"10.1016/j.conb.2024.102842","DOIUrl":null,"url":null,"abstract":"<div><p><span>Data-driven computational models of neurons, synapses, microcircuits, and mesocircuits have become essential tools in modern brain research. The goal of these multiscale models is to integrate and synthesize information from different levels of brain organization, from cellular properties, dendritic excitability, and synaptic dynamics to microcircuits, mesocircuits, and ultimately behavior<span>. This article surveys recent advances in the genesis of data-driven computational models of mammalian neural networks in cortical and subcortical areas. I discuss the challenges and opportunities in developing data-driven multiscale models, including the need for interdisciplinary collaborations, the importance of model validation and comparison, and the potential impact on basic and translational </span></span>neuroscience research. Finally, I highlight future directions and emerging technologies that will enable more comprehensive and predictive data-driven models of brain function and dysfunction.</p></div>","PeriodicalId":10999,"journal":{"name":"Current Opinion in Neurobiology","volume":"85 ","pages":"Article 102842"},"PeriodicalIF":4.8000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current Opinion in Neurobiology","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0959438824000047","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Data-driven computational models of neurons, synapses, microcircuits, and mesocircuits have become essential tools in modern brain research. The goal of these multiscale models is to integrate and synthesize information from different levels of brain organization, from cellular properties, dendritic excitability, and synaptic dynamics to microcircuits, mesocircuits, and ultimately behavior. This article surveys recent advances in the genesis of data-driven computational models of mammalian neural networks in cortical and subcortical areas. I discuss the challenges and opportunities in developing data-driven multiscale models, including the need for interdisciplinary collaborations, the importance of model validation and comparison, and the potential impact on basic and translational neuroscience research. Finally, I highlight future directions and emerging technologies that will enable more comprehensive and predictive data-driven models of brain function and dysfunction.
期刊介绍:
Current Opinion in Neurobiology publishes short annotated reviews by leading experts on recent developments in the field of neurobiology. These experts write short reviews describing recent discoveries in this field (in the past 2-5 years), as well as highlighting select individual papers of particular significance.
The journal is thus an important resource allowing researchers and educators to quickly gain an overview and rich understanding of complex and current issues in the field of Neurobiology. The journal takes a unique and valuable approach in focusing each special issue around a topic of scientific and/or societal interest, and then bringing together leading international experts studying that topic, embracing diverse methodologies and perspectives.
Journal Content: The journal consists of 6 issues per year, covering 8 recurring topics every other year in the following categories:
-Neurobiology of Disease-
Neurobiology of Behavior-
Cellular Neuroscience-
Systems Neuroscience-
Developmental Neuroscience-
Neurobiology of Learning and Plasticity-
Molecular Neuroscience-
Computational Neuroscience