Engineering mammalian cell growth dynamics for biomanufacturing

IF 6.8 1区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Metabolic engineering Pub Date : 2024-02-06 DOI:10.1016/j.ymben.2024.01.006
Mauro Torres , Dewi Mcconnaughie , Samia Akhtar , Claire E. Gaffney , Bruno Fievet , Catherine Ingham , Mark Stockdale , Alan J. Dickson
{"title":"Engineering mammalian cell growth dynamics for biomanufacturing","authors":"Mauro Torres ,&nbsp;Dewi Mcconnaughie ,&nbsp;Samia Akhtar ,&nbsp;Claire E. Gaffney ,&nbsp;Bruno Fievet ,&nbsp;Catherine Ingham ,&nbsp;Mark Stockdale ,&nbsp;Alan J. Dickson","doi":"10.1016/j.ymben.2024.01.006","DOIUrl":null,"url":null,"abstract":"<div><p>Precise control over mammalian cell growth dynamics poses a major challenge in biopharmaceutical manufacturing. Here, we present a multi-level cell engineering strategy for the tunable regulation of growth phases in mammalian cells. Initially, we engineered mammalian death phase by employing CRISPR/Cas9 to knockout pro-apoptotic proteins Bax and Bak, resulting in a substantial attenuation of apoptosis by improving cell viability and extending culture lifespan. The second phase introduced a growth acceleration system, akin to a “gas pedal”, based on an abscidic acid inducible system regulating cMYC gene expression, enabling rapid cell density increase and cell cycle control. The third phase focused on a stationary phase inducing system, comparable to a “brake pedal”. A tetracycline inducible genetic circuit based on BLIMP1 gene led to cell growth cessation and arrested cell cycle upon activation. Finally, we developed a dual controllable system, combining the “gas and brake pedals”, enabling for dynamic and precise orchestration of mammalian cell growth dynamics. This work exemplifies the application of synthetic biology tools and combinatorial cell engineering, offering a sophisticated framework for manipulating mammalian cell growth and providing a unique paradigm for reprogramming cell behaviour for enhancing biopharmaceutical manufacturing and further biomedical applications.</p></div>","PeriodicalId":18483,"journal":{"name":"Metabolic engineering","volume":null,"pages":null},"PeriodicalIF":6.8000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metabolic engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1096717624000120","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Precise control over mammalian cell growth dynamics poses a major challenge in biopharmaceutical manufacturing. Here, we present a multi-level cell engineering strategy for the tunable regulation of growth phases in mammalian cells. Initially, we engineered mammalian death phase by employing CRISPR/Cas9 to knockout pro-apoptotic proteins Bax and Bak, resulting in a substantial attenuation of apoptosis by improving cell viability and extending culture lifespan. The second phase introduced a growth acceleration system, akin to a “gas pedal”, based on an abscidic acid inducible system regulating cMYC gene expression, enabling rapid cell density increase and cell cycle control. The third phase focused on a stationary phase inducing system, comparable to a “brake pedal”. A tetracycline inducible genetic circuit based on BLIMP1 gene led to cell growth cessation and arrested cell cycle upon activation. Finally, we developed a dual controllable system, combining the “gas and brake pedals”, enabling for dynamic and precise orchestration of mammalian cell growth dynamics. This work exemplifies the application of synthetic biology tools and combinatorial cell engineering, offering a sophisticated framework for manipulating mammalian cell growth and providing a unique paradigm for reprogramming cell behaviour for enhancing biopharmaceutical manufacturing and further biomedical applications.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
哺乳动物细胞生长动力学工程,促进生物制造
精确控制哺乳动物细胞的生长动态是生物制药领域的一大挑战。在这里,我们提出了一种多层次细胞工程策略,用于调节哺乳动物细胞的生长阶段。首先,我们利用 CRISPR/Cas9 基因敲除促凋亡蛋白 Bax 和 Bak,设计了哺乳动物细胞的死亡阶段,通过提高细胞活力和延长培养寿命,大大减少了细胞凋亡。第二阶段引入了一种类似于 "油门踏板 "的生长加速系统,该系统基于一种可调控 cMYC 基因表达的赤霉酸诱导系统,能够快速提高细胞密度并控制细胞周期。第三阶段的重点是静止期诱导系统,类似于 "刹车踏板"。基于 BLIMP1 基因的四环素诱导基因回路在激活后可导致细胞生长停止和细胞周期停滞。最后,我们开发出了一种结合 "油门和刹车踏板 "的双重可控系统,能够动态、精确地协调哺乳动物细胞的生长动态。这项工作体现了合成生物学工具和组合细胞工程的应用,为操纵哺乳动物细胞生长提供了一个复杂的框架,并为重新编程细胞行为提供了一个独特的范例,从而提高生物制药生产和进一步的生物医学应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Metabolic engineering
Metabolic engineering 工程技术-生物工程与应用微生物
CiteScore
15.60
自引率
6.00%
发文量
140
审稿时长
44 days
期刊介绍: Metabolic Engineering (MBE) is a journal that focuses on publishing original research papers on the directed modulation of metabolic pathways for metabolite overproduction or the enhancement of cellular properties. It welcomes papers that describe the engineering of native pathways and the synthesis of heterologous pathways to convert microorganisms into microbial cell factories. The journal covers experimental, computational, and modeling approaches for understanding metabolic pathways and manipulating them through genetic, media, or environmental means. Effective exploration of metabolic pathways necessitates the use of molecular biology and biochemistry methods, as well as engineering techniques for modeling and data analysis. MBE serves as a platform for interdisciplinary research in fields such as biochemistry, molecular biology, applied microbiology, cellular physiology, cellular nutrition in health and disease, and biochemical engineering. The journal publishes various types of papers, including original research papers and review papers. It is indexed and abstracted in databases such as Scopus, Embase, EMBiology, Current Contents - Life Sciences and Clinical Medicine, Science Citation Index, PubMed/Medline, CAS and Biotechnology Citation Index.
期刊最新文献
Heterologous biosynthesis of betanin triggers metabolic reprogramming in tobacco. Not all cytochrome b5s are created equal: How a specific CytB5 boosts forskolin biosynthesis in Saccharomyces cerevisiae Applying metabolic control strategies to engineered T cell cancer therapies Engineering Halomonas bluephagenesis for synthesis of polyhydroxybutyrate (PHB) in the presence of high nitrogen containing media Adaptive laboratory evolution and metabolic engineering of Cupriavidus necator for improved catabolism of volatile fatty acids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1