Efficacy of outer membrane permeabilization in promoting aromatic isothiocyanates-mediated eradication of multidrug resistant Gram-negative bacteria and bacterial persisters.
Chung-Cheng Lo, Tzu-Hui Yeh, Ya-Hsuan Jao, Tzu-Hui Wang, Horng-Ren Lo
{"title":"Efficacy of outer membrane permeabilization in promoting aromatic isothiocyanates-mediated eradication of multidrug resistant Gram-negative bacteria and bacterial persisters.","authors":"Chung-Cheng Lo, Tzu-Hui Yeh, Ya-Hsuan Jao, Tzu-Hui Wang, Horng-Ren Lo","doi":"10.1007/s12223-024-01143-6","DOIUrl":null,"url":null,"abstract":"<p><p>Multidrug resistant (MDR) bacteria are recognized to be one of the most important problems in public health. The outer membrane permeability is a critical intrinsic mechanism of bacterial resistance. In addition, bacteria produce a small number of dormant persister cells causing multidrug tolerance that reduces antimicrobial efficacy. This study aimed to evaluate the inhibitory effects of the combination of aromatic isothiocyanates (ITCs) with membrane-active agents on bacterial persisters and MDR Gram-negative bacteria. Our study demonstrated that membrane-active agents, particularly ethylenediaminetetraacetic acid (EDTA) synergistically enhanced the inhibitory activity of aromatic benzyl ITC and phenethyl ITC against most Gram-negative bacteria strains with fractional inhibitory concentration index values ranging from 0.18 to 0.5 and 0.16 to 0.5, respectively, and contributed to an 8- to 64-fold minimal inhibitory concentration reduction compared with those of aromatic ITCs alone. The EDTA-aromatic ITCs combination effectively reduced the survival rates of tested bacteria and significantly eradicated bacterial persisters (p = 0.033 and 0.037, respectively). The growth kinetics analysis also supported the enhanced inhibitory effect of EDTA-aromatic ITCs combination against tested bacteria. Our results suggested an alternate treatment strategy against Gram-negative bacteria, promoting the entry of aromatic ITCs into bacterial cytoplasm to facilitate bacterial clearance and thus preventing the development of bacterial resistance.</p>","PeriodicalId":12346,"journal":{"name":"Folia microbiologica","volume":" ","pages":"993-1002"},"PeriodicalIF":2.4000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Folia microbiologica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s12223-024-01143-6","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/6 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Multidrug resistant (MDR) bacteria are recognized to be one of the most important problems in public health. The outer membrane permeability is a critical intrinsic mechanism of bacterial resistance. In addition, bacteria produce a small number of dormant persister cells causing multidrug tolerance that reduces antimicrobial efficacy. This study aimed to evaluate the inhibitory effects of the combination of aromatic isothiocyanates (ITCs) with membrane-active agents on bacterial persisters and MDR Gram-negative bacteria. Our study demonstrated that membrane-active agents, particularly ethylenediaminetetraacetic acid (EDTA) synergistically enhanced the inhibitory activity of aromatic benzyl ITC and phenethyl ITC against most Gram-negative bacteria strains with fractional inhibitory concentration index values ranging from 0.18 to 0.5 and 0.16 to 0.5, respectively, and contributed to an 8- to 64-fold minimal inhibitory concentration reduction compared with those of aromatic ITCs alone. The EDTA-aromatic ITCs combination effectively reduced the survival rates of tested bacteria and significantly eradicated bacterial persisters (p = 0.033 and 0.037, respectively). The growth kinetics analysis also supported the enhanced inhibitory effect of EDTA-aromatic ITCs combination against tested bacteria. Our results suggested an alternate treatment strategy against Gram-negative bacteria, promoting the entry of aromatic ITCs into bacterial cytoplasm to facilitate bacterial clearance and thus preventing the development of bacterial resistance.
期刊介绍:
Unlike journals which specialize ever more narrowly, Folia Microbiologica (FM) takes an open approach that spans general, soil, medical and industrial microbiology, plus some branches of immunology. This English-language journal publishes original papers, reviews and mini-reviews, short communications and book reviews. The coverage includes cutting-edge methods and promising new topics, as well as studies using established methods that exhibit promise in practical applications such as medicine, animal husbandry and more. The coverage of FM is expanding beyond Central and Eastern Europe, with a growing proportion of its contents contributed by international authors.