Bioinformatics to analyze the differentially expressed genes in different degrees of Alzheimer's disease and their roles in progress of the disease.

IF 2 3区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY Journal of Applied Genetics Pub Date : 2024-02-05 DOI:10.1007/s13353-024-00827-6
Yanfang Niu, Yunyun Zhang, Qin Zha, Jingfei Shi, Qiuyan Weng
{"title":"Bioinformatics to analyze the differentially expressed genes in different degrees of Alzheimer's disease and their roles in progress of the disease.","authors":"Yanfang Niu, Yunyun Zhang, Qin Zha, Jingfei Shi, Qiuyan Weng","doi":"10.1007/s13353-024-00827-6","DOIUrl":null,"url":null,"abstract":"<p><p>Employing bioinformatics approaches, this investigation pinpointed pivotal differentially expressed genes (DEGs) across the spectrum of Alzheimer's disease (AD), from incipient to severe stages, using the GSE28146 dataset from the GEO repository. Analytical methods included DEG identification via the limma package in R, coupled with GO and KEGG pathway analyses through clusterProfiler, to discern biological processes and pathway involvements. Key findings spotlighted the roles of proteasome subunits PSMB4, PSMB8, PSMC4, and PSMD6 in the early stage, ribosomal proteins RPS3 and RPL11 during moderate AD, and mitochondrial components COX5B, COX6B2, and COX7A2 in severe AD, underscoring their importance in the disease's pathogenesis. Conclusively, these results not only delineate the dynamic genetic shifts accompanying AD progression but also propose critical biomarkers for potential therapeutic targeting, offering a consolidated basis for future AD research and treatment development. This offered a novel idea for analyzing the pathogenesis and development of AD and investigation of targeted drugs.</p>","PeriodicalId":14891,"journal":{"name":"Journal of Applied Genetics","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Genetics","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s13353-024-00827-6","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Employing bioinformatics approaches, this investigation pinpointed pivotal differentially expressed genes (DEGs) across the spectrum of Alzheimer's disease (AD), from incipient to severe stages, using the GSE28146 dataset from the GEO repository. Analytical methods included DEG identification via the limma package in R, coupled with GO and KEGG pathway analyses through clusterProfiler, to discern biological processes and pathway involvements. Key findings spotlighted the roles of proteasome subunits PSMB4, PSMB8, PSMC4, and PSMD6 in the early stage, ribosomal proteins RPS3 and RPL11 during moderate AD, and mitochondrial components COX5B, COX6B2, and COX7A2 in severe AD, underscoring their importance in the disease's pathogenesis. Conclusively, these results not only delineate the dynamic genetic shifts accompanying AD progression but also propose critical biomarkers for potential therapeutic targeting, offering a consolidated basis for future AD research and treatment development. This offered a novel idea for analyzing the pathogenesis and development of AD and investigation of targeted drugs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用生物信息学分析不同程度阿尔茨海默病的不同表达基因及其在疾病进展中的作用。
这项研究采用生物信息学方法,利用 GEO 数据库中的 GSE28146 数据集,精确定位了阿尔茨海默病(AD)从萌芽期到严重期各个阶段的关键差异表达基因(DEG)。分析方法包括通过R语言中的limma软件包识别DEG,并通过clusterProfiler进行GO和KEGG通路分析,以辨别生物过程和通路参与。主要发现突出了蛋白酶体亚基 PSMB4、PSMB8、PSMC4 和 PSMD6 在早期,核糖体蛋白 RPS3 和 RPL11 在中度 AD 中,线粒体成分 COX5B、COX6B2 和 COX7A2 在重度 AD 中的作用,强调了它们在疾病发病机制中的重要性。最后,这些结果不仅描述了伴随渐冻人症进展的动态基因变化,还提出了潜在治疗靶点的关键生物标志物,为未来渐冻人症的研究和治疗开发提供了坚实的基础。这为分析渐冻人症的发病机制和发展过程以及研究靶向药物提供了一个新思路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Applied Genetics
Journal of Applied Genetics 生物-生物工程与应用微生物
CiteScore
4.30
自引率
4.20%
发文量
62
审稿时长
6-12 weeks
期刊介绍: The Journal of Applied Genetics is an international journal on genetics and genomics. It publishes peer-reviewed original papers, short communications (including case reports) and review articles focused on the research of applicative aspects of plant, human, animal and microbial genetics and genomics.
期刊最新文献
Correction to: Diallel analysis of common bean (Phaseolus vulgaris L.) genotypes for seed dietary fibre, carbohydrate, calcium and phosphorus contents. Retraction Note: A new DNA sequence entropy-based Kullback-Leibler algorithm for gene clustering. Peptidylprolyl isomerase D circular RNA sensitizes breast cancer to trastuzumab through remodeling HER2 N4-acetylcytidine modification. The role of multidisciplinary diagnostic and therapeutic model of care in Lamb-Shaffer syndrome - case report. Uncovering the role of aquaporin and chromobox family members as potential biomarkers in head and neck squamous cell carcinoma via integrative multiomics and in silico approach.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1