{"title":"Balloon Dilatation for Bronchoscope Delivery in a Swine Model: A Novel Technique for Ultra-Peripheral Lung Field Access and Accurate Biopsy.","authors":"Kotaro Miyake, Takayuki Shiroyama, Shingo Satoh, Yuichi Adachi, Kika Ohira, Yuko Abe, So Takata, Kentaro Masuhiro, Yujiro Naito, Haruhiko Hirata, Izumi Nagatomo, Yoshito Takeda, Atsushi Kumanogoh","doi":"10.1159/000536666","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>In transbronchial biopsy of peripheral pulmonary lesions, the bronchoscope can reach only a limited depth due to the progressive narrowing of bronchi, which may reduce the diagnostic rate. This study examined the balloon dilatation for bronchoscope delivery (BDBD) technique, employing a novel balloon device to enhance bronchoscopy into the peripheral lung areas.</p><p><strong>Methods: </strong>Anaesthetised swine served as our primary model. Using computed tomography (CT) scans, we positioned virtual targets characterised by a positive bronchus sign and a diameter of 20 mm beneath the pleura. The bronchoscope was navigated along the pathways determined from the CT images. We performed balloon dilatation when bronchial narrowing obstructed progress to assess whether balloon dilatation would enable the bronchoscope to enter further into the periphery.</p><p><strong>Results: </strong>We established 21 virtual targets on the CT scans. An average of 12.1 branches were identified along the pathways on the CT scans; however, bronchoscopy without BDBD only allowed access to an average of 6.7 branches. Based on 72 balloon dilatations with 3.0-mm or 4.0-mm ultra-thin bronchoscopes, there was an average increased access of 3.43 and 5.14 branches per route, respectively, with no significant BDBD complications. The bronchoscope was able to reach the planned location along all pathways, and the mean final bronchoscopic endpoints were at an average distance of 14.7 mm from the pleura. Post-procedure CT confirmed biopsy accuracy.</p><p><strong>Conclusion: </strong>The BDBD technique can enhance access of a flexible bronchoscope into the peripheral lung fields, which could potentially allow more accurate transbronchial interventions for peripheral targets.</p>","PeriodicalId":21048,"journal":{"name":"Respiration","volume":" ","pages":"205-213"},"PeriodicalIF":3.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Respiration","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1159/000536666","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/5 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"RESPIRATORY SYSTEM","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: In transbronchial biopsy of peripheral pulmonary lesions, the bronchoscope can reach only a limited depth due to the progressive narrowing of bronchi, which may reduce the diagnostic rate. This study examined the balloon dilatation for bronchoscope delivery (BDBD) technique, employing a novel balloon device to enhance bronchoscopy into the peripheral lung areas.
Methods: Anaesthetised swine served as our primary model. Using computed tomography (CT) scans, we positioned virtual targets characterised by a positive bronchus sign and a diameter of 20 mm beneath the pleura. The bronchoscope was navigated along the pathways determined from the CT images. We performed balloon dilatation when bronchial narrowing obstructed progress to assess whether balloon dilatation would enable the bronchoscope to enter further into the periphery.
Results: We established 21 virtual targets on the CT scans. An average of 12.1 branches were identified along the pathways on the CT scans; however, bronchoscopy without BDBD only allowed access to an average of 6.7 branches. Based on 72 balloon dilatations with 3.0-mm or 4.0-mm ultra-thin bronchoscopes, there was an average increased access of 3.43 and 5.14 branches per route, respectively, with no significant BDBD complications. The bronchoscope was able to reach the planned location along all pathways, and the mean final bronchoscopic endpoints were at an average distance of 14.7 mm from the pleura. Post-procedure CT confirmed biopsy accuracy.
Conclusion: The BDBD technique can enhance access of a flexible bronchoscope into the peripheral lung fields, which could potentially allow more accurate transbronchial interventions for peripheral targets.
期刊介绍:
''Respiration'' brings together the results of both clinical and experimental investigations on all aspects of the respiratory system in health and disease. Clinical improvements in the diagnosis and treatment of chest and lung diseases are covered, as are the latest findings in physiology, biochemistry, pathology, immunology and pharmacology. The journal includes classic features such as editorials that accompany original articles in clinical and basic science research, reviews and letters to the editor. Further sections are: Technical Notes, The Eye Catcher, What’s Your Diagnosis?, The Opinion Corner, New Drugs in Respiratory Medicine, New Insights from Clinical Practice and Guidelines. ''Respiration'' is the official journal of the Swiss Society for Pneumology (SGP) and also home to the European Association for Bronchology and Interventional Pulmonology (EABIP), which occupies a dedicated section on Interventional Pulmonology in the journal. This modern mix of different features and a stringent peer-review process by a dedicated editorial board make ''Respiration'' a complete guide to progress in thoracic medicine.