Estefanía Fandiño-Devia, Gloria A Santa-González, Maria C Klaiss-Luna, Marcela Manrique-Moreno
{"title":"Study of the Membrane Activity of the Synthetic Peptide ∆M3 Against Extended-Spectrum β-lactamase Escherichia coli Isolates.","authors":"Estefanía Fandiño-Devia, Gloria A Santa-González, Maria C Klaiss-Luna, Marcela Manrique-Moreno","doi":"10.1007/s00232-024-00306-3","DOIUrl":null,"url":null,"abstract":"<p><p>Escherichia coli is the most common microorganism causing nosocomial or community-acquired bacteremia, and extended-spectrum β-lactamase-producing Escherichia coli isolates are identified worldwide with increasing frequency. For this reason, it is necessary to evaluate potential new molecules like antimicrobial peptides. They are recognized for their biological potential which makes them promising candidates in the fight against infections. The goal of this research was to evaluate the potential of the synthetic peptide ΔM3 on several extended-spectrum β-lactamase producing E. coli isolates. The antimicrobial and cytotoxic activity of the peptide was spectrophotometrically determined. Additionally, the capacity of the peptide to interact with the bacterial membrane was monitored by fluorescence microscopy and infrared spectroscopy. The results demonstrated that the synthetic peptide is active against Escherichia coli isolates at concentrations similar to Meropenem. On the other hand, no cytotoxic effect was observed in HaCaT keratinocyte cells even at 10 times the minimal inhibitory concentration. Microscopy results showed a permeabilizing effect of the peptide on the bacteria. The infrared results showed that ΔM3 showed affinity for the lipids of the microorganism's membrane. The results suggest that the ∆M3 interacts with the negatively charged lipids from the E. coli by a disturbing effect on membrane. Finally, the secondary structure experiments of the peptide showed a random structure in solution that did not change during the interaction with the membranes.</p>","PeriodicalId":50129,"journal":{"name":"Journal of Membrane Biology","volume":" ","pages":"51-61"},"PeriodicalIF":2.3000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11006780/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Membrane Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00232-024-00306-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Escherichia coli is the most common microorganism causing nosocomial or community-acquired bacteremia, and extended-spectrum β-lactamase-producing Escherichia coli isolates are identified worldwide with increasing frequency. For this reason, it is necessary to evaluate potential new molecules like antimicrobial peptides. They are recognized for their biological potential which makes them promising candidates in the fight against infections. The goal of this research was to evaluate the potential of the synthetic peptide ΔM3 on several extended-spectrum β-lactamase producing E. coli isolates. The antimicrobial and cytotoxic activity of the peptide was spectrophotometrically determined. Additionally, the capacity of the peptide to interact with the bacterial membrane was monitored by fluorescence microscopy and infrared spectroscopy. The results demonstrated that the synthetic peptide is active against Escherichia coli isolates at concentrations similar to Meropenem. On the other hand, no cytotoxic effect was observed in HaCaT keratinocyte cells even at 10 times the minimal inhibitory concentration. Microscopy results showed a permeabilizing effect of the peptide on the bacteria. The infrared results showed that ΔM3 showed affinity for the lipids of the microorganism's membrane. The results suggest that the ∆M3 interacts with the negatively charged lipids from the E. coli by a disturbing effect on membrane. Finally, the secondary structure experiments of the peptide showed a random structure in solution that did not change during the interaction with the membranes.
期刊介绍:
The Journal of Membrane Biology is dedicated to publishing high-quality science related to membrane biology, biochemistry and biophysics. In particular, we welcome work that uses modern experimental or computational methods including but not limited to those with microscopy, diffraction, NMR, computer simulations, or biochemistry aimed at membrane associated or membrane embedded proteins or model membrane systems. These methods might be applied to study topics like membrane protein structure and function, membrane mediated or controlled signaling mechanisms, cell-cell communication via gap junctions, the behavior of proteins and lipids based on monolayer or bilayer systems, or genetic and regulatory mechanisms controlling membrane function.
Research articles, short communications and reviews are all welcome. We also encourage authors to consider publishing ''negative'' results where experiments or simulations were well performed, but resulted in unusual or unexpected outcomes without obvious explanations.
While we welcome connections to clinical studies, submissions that are primarily clinical in nature or that fail to make connections to the basic science issues of membrane structure, chemistry and function, are not appropriate for the journal. In a similar way, studies that are primarily descriptive and narratives of assays in a clinical or population study are best published in other journals. If you are not certain, it is entirely appropriate to write to us to inquire if your study is a good fit for the journal.