A bat biomimetic model for scenario recognition using echo Doppler information.

IF 3.1 3区 计算机科学 Q1 ENGINEERING, MULTIDISCIPLINARY Bioinspiration & Biomimetics Pub Date : 2024-02-21 DOI:10.1088/1748-3190/ad262d
Wang Feng, Pang Chunyang, Lu Yuqing, Wang Hao
{"title":"A bat biomimetic model for scenario recognition using echo Doppler information.","authors":"Wang Feng, Pang Chunyang, Lu Yuqing, Wang Hao","doi":"10.1088/1748-3190/ad262d","DOIUrl":null,"url":null,"abstract":"<p><p>The flying bat can detect the difference in Doppler frequency between its echolocation transmission signal and the echoes in its surroundings, enabling it to distinguish between various scenarios effectively. By examining the bio-sonar biomimetic model of a flying bat that uses echo Doppler information for environmental recognition, it may enhance the scene recognition capability of human ultrasound sonar during movement. The paper establishes a three-dimensional clutter model of the flying state of bat bio-sonar for bats emitting constant frequency signals. It proposes a scene recognition method that combines multi-scale time-frequency feature analysis with a convolutional neural network (CNN). The short-time Fourier transform of different scales extract the Doppler and range dimensions, which are then fused to create a multi-scale feature plane containing both Doppler and range information. Combined with CNN's powerful image classification and recognition capabilities, extract features from multi-scale feature planes of different clutter scenes to achieve environment recognition based on the differences in Doppler and range dimensions of echoes in various directions. Through computer simulations, this study provides a numerical interpretation of the environmental classification and perception capabilities of bats in flight. The algorithm significantly improves scenario classification and recognition performance according to simulation results, with accuracy exceeding 98% in varied clutter scenarios at 30 dB signal noise ratio. Based on computer simulations, an experimental scene was constructed and actual echo signals were collected and analyzed. The experiments demonstrate that utilizing Doppler information enables the classification and recognition of cluttered environments. The effectiveness of the proposed algorithm was also verified. Ultrasonic sonar systems, such as navigation robots and helicopter obstacle avoidance, can apply this biomimetic model and algorithm for environmental recognition during motion.</p>","PeriodicalId":55377,"journal":{"name":"Bioinspiration & Biomimetics","volume":null,"pages":null},"PeriodicalIF":3.1000,"publicationDate":"2024-02-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioinspiration & Biomimetics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1088/1748-3190/ad262d","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The flying bat can detect the difference in Doppler frequency between its echolocation transmission signal and the echoes in its surroundings, enabling it to distinguish between various scenarios effectively. By examining the bio-sonar biomimetic model of a flying bat that uses echo Doppler information for environmental recognition, it may enhance the scene recognition capability of human ultrasound sonar during movement. The paper establishes a three-dimensional clutter model of the flying state of bat bio-sonar for bats emitting constant frequency signals. It proposes a scene recognition method that combines multi-scale time-frequency feature analysis with a convolutional neural network (CNN). The short-time Fourier transform of different scales extract the Doppler and range dimensions, which are then fused to create a multi-scale feature plane containing both Doppler and range information. Combined with CNN's powerful image classification and recognition capabilities, extract features from multi-scale feature planes of different clutter scenes to achieve environment recognition based on the differences in Doppler and range dimensions of echoes in various directions. Through computer simulations, this study provides a numerical interpretation of the environmental classification and perception capabilities of bats in flight. The algorithm significantly improves scenario classification and recognition performance according to simulation results, with accuracy exceeding 98% in varied clutter scenarios at 30 dB signal noise ratio. Based on computer simulations, an experimental scene was constructed and actual echo signals were collected and analyzed. The experiments demonstrate that utilizing Doppler information enables the classification and recognition of cluttered environments. The effectiveness of the proposed algorithm was also verified. Ultrasonic sonar systems, such as navigation robots and helicopter obstacle avoidance, can apply this biomimetic model and algorithm for environmental recognition during motion.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用回声多普勒信息进行场景识别的蝙蝠生物仿真模型。
飞蝠可以探测到其回声定位发射信号与周围环境回声之间的多普勒频率差异,从而有效区分各种场景。通过研究飞行蝙蝠利用回声多普勒信息进行环境识别的生物声纳仿生模型,可以提高人类超声声纳在运动过程中的场景识别能力。本文针对发射恒频(CF)信号的蝙蝠,建立了蝙蝠生物声纳飞行状态的三维杂波模型。它提出了一种结合多尺度时频特征分析和卷积神经网络(CNN)的场景识别方法。不同尺度的短时傅里叶变换(STFT)可提取多普勒和测距维度,然后将其融合以创建包含多普勒和测距信息的多尺度特征平面。结合 CNN 强大的图像分类和识别能力,从不同杂波场景的多尺度特征平面中提取特征,实现基于不同方向回波的多普勒和测距维度差异的环境识别。本研究通过计算机模拟,对飞行中蝙蝠的环境分类和感知能力进行了数值解释。根据模拟结果,该算法大大提高了场景分类和识别性能,在信噪比(SNR)为 30 dB 的不同杂波场景中,准确率超过 98%。在计算机模拟的基础上,构建了一个实验场景,并收集和分析了实际回波信号。实验证明,利用多普勒信息可以对杂乱环境进行分类和识别。同时还验证了所提算法的有效性。超声声纳系统,如导航机器人和直升机避障系统,可以应用这种生物仿真模型和算法进行运动过程中的环境识别。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioinspiration & Biomimetics
Bioinspiration & Biomimetics 工程技术-材料科学:生物材料
CiteScore
5.90
自引率
14.70%
发文量
132
审稿时长
3 months
期刊介绍: Bioinspiration & Biomimetics publishes research involving the study and distillation of principles and functions found in biological systems that have been developed through evolution, and application of this knowledge to produce novel and exciting basic technologies and new approaches to solving scientific problems. It provides a forum for interdisciplinary research which acts as a pipeline, facilitating the two-way flow of ideas and understanding between the extensive bodies of knowledge of the different disciplines. It has two principal aims: to draw on biology to enrich engineering and to draw from engineering to enrich biology. The journal aims to include input from across all intersecting areas of both fields. In biology, this would include work in all fields from physiology to ecology, with either zoological or botanical focus. In engineering, this would include both design and practical application of biomimetic or bioinspired devices and systems. Typical areas of interest include: Systems, designs and structure Communication and navigation Cooperative behaviour Self-organizing biological systems Self-healing and self-assembly Aerial locomotion and aerospace applications of biomimetics Biomorphic surface and subsurface systems Marine dynamics: swimming and underwater dynamics Applications of novel materials Biomechanics; including movement, locomotion, fluidics Cellular behaviour Sensors and senses Biomimetic or bioinformed approaches to geological exploration.
期刊最新文献
Enhancing postural stability in musculoskeletal quadrupedal locomotion through tension feedback for CPG-based controller. One-shot manufacturable soft-robotic pump inspired by embryonic tubular heart. Role of viscoelasticity in the adhesion of mushroom-shaped pillars. A biomimetic fruit fly robot for studying the neuromechanics of legged locomotion. Encoding spatiotemporal asymmetry in artificial cilia with a ctenophore-inspired soft-robotic platform.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1