Accelerated modeling and design of a mixed refrigerant cryogenic process using a data-driven approach

IF 3 Q2 ENGINEERING, CHEMICAL Digital Chemical Engineering Pub Date : 2024-01-30 DOI:10.1016/j.dche.2024.100143
Hosein Alimardani , Mehrdad Asgari , Roohangiz Shivaee-Gariz , Javad Tamnanloo
{"title":"Accelerated modeling and design of a mixed refrigerant cryogenic process using a data-driven approach","authors":"Hosein Alimardani ,&nbsp;Mehrdad Asgari ,&nbsp;Roohangiz Shivaee-Gariz ,&nbsp;Javad Tamnanloo","doi":"10.1016/j.dche.2024.100143","DOIUrl":null,"url":null,"abstract":"<div><p>Cryogenic processes with mixed refrigerants are prevalent in energy-intensive chemical industries, enhancing energy efficiency while reducing costs and unit size. However, the curse of dimensionality and process design constraints pose significant hurdles for effective screening and optimization. To tackle this, we developed a neural network model for natural gas liquefaction prediction. Trained on an extensive Aspen HYSYS database, our ML model accurately simulates LNG processes, with an impressive <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup></math></span> test value of 99.63, operating almost ten million times faster than HYSYS. It effectively addresses vital process design constraints, including liquid slugging and temperature cross, crucial for optimization. By integrating the ML model with genetic and Nelder–Mead algorithms, we achieve an 8.9% reduction in total exergy, outperforming Aspen HYSYS within the same time frame. Our study underscores ML’s significance in modeling energy-intensive chemical processes, providing insights into the exergy profile and enabling feature importance analysis.</p></div>","PeriodicalId":72815,"journal":{"name":"Digital Chemical Engineering","volume":"10 ","pages":"Article 100143"},"PeriodicalIF":3.0000,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S277250812400005X/pdfft?md5=cb4dcb0cfd121a5b865f2a5c7ff25e37&pid=1-s2.0-S277250812400005X-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S277250812400005X","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Cryogenic processes with mixed refrigerants are prevalent in energy-intensive chemical industries, enhancing energy efficiency while reducing costs and unit size. However, the curse of dimensionality and process design constraints pose significant hurdles for effective screening and optimization. To tackle this, we developed a neural network model for natural gas liquefaction prediction. Trained on an extensive Aspen HYSYS database, our ML model accurately simulates LNG processes, with an impressive R2 test value of 99.63, operating almost ten million times faster than HYSYS. It effectively addresses vital process design constraints, including liquid slugging and temperature cross, crucial for optimization. By integrating the ML model with genetic and Nelder–Mead algorithms, we achieve an 8.9% reduction in total exergy, outperforming Aspen HYSYS within the same time frame. Our study underscores ML’s significance in modeling energy-intensive chemical processes, providing insights into the exergy profile and enabling feature importance analysis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用数据驱动方法加速混合制冷剂低温工艺的建模和设计
使用混合制冷剂的低温工艺在能源密集型化学工业中十分普遍,在提高能源效率的同时还能降低成本和单位规模。然而,维度诅咒和工艺设计限制给有效筛选和优化带来了巨大障碍。为了解决这个问题,我们开发了一个用于天然气液化预测的神经网络模型。我们的 ML 模型在广泛的 Aspen HYSYS 数据库上进行了训练,可精确模拟液化天然气工艺,R2 测试值高达 99.63,运行速度比 HYSYS 快近 1000 万倍。它能有效解决重要的工艺设计约束,包括对优化至关重要的液体淤积和温度交叉。通过将 ML 模型与遗传算法和 Nelder-Mead 算法相结合,我们实现了总能耗降低 8.9%,在相同的时间范围内优于 Aspen HYSYS。我们的研究强调了 ML 在能源密集型化学过程建模中的重要作用,它提供了对放能曲线的洞察力,并实现了特征重要性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.10
自引率
0.00%
发文量
0
期刊最新文献
The trust region filter strategy: Survey of a rigorous approach for optimization with surrogate models Multi-agent distributed control of integrated process networks using an adaptive community detection approach Industrial data-driven machine learning soft sensing for optimal operation of etching tools Process integration technique for targeting carbon credit price subsidy Robust simulation and technical evaluation of large-scale gas oil hydrocracking process via extended water-energy-product (E-WEP) analysis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1