Jigme Dorji, Antonio Reverter, Pamela A. Alexandre, Amanda J. Chamberlain, Christy J. Vander-Jagt, James Kijas, Laercio R. Porto-Neto
{"title":"Ancestral alleles defined for 70 million cattle variants using a population-based likelihood ratio test","authors":"Jigme Dorji, Antonio Reverter, Pamela A. Alexandre, Amanda J. Chamberlain, Christy J. Vander-Jagt, James Kijas, Laercio R. Porto-Neto","doi":"10.1186/s12711-024-00879-6","DOIUrl":null,"url":null,"abstract":"The study of ancestral alleles provides insights into the evolutionary history, selection, and genetic structures of a population. In cattle, ancestral alleles are widely used in genetic analyses, including the detection of signatures of selection, determination of breed ancestry, and identification of admixture. Having a comprehensive list of ancestral alleles is expected to improve the accuracy of these genetic analyses. However, the list of ancestral alleles in cattle, especially at the whole genome sequence level, is far from complete. In fact, the current largest list of ancestral alleles (~ 42 million) represents less than 28% of the total number of detected variants in cattle. To address this issue and develop a genomic resource for evolutionary studies, we determined ancestral alleles in cattle by comparing prior derived whole-genome sequence variants to an out-species group using a population-based likelihood ratio test. Our study determined and makes available the largest list of ancestral alleles in cattle to date (70.1 million) and includes 2.3 million on the X chromosome. There was high concordance (97.6%) of the determined ancestral alleles with those from previous studies when only high-probability ancestral alleles were considered (29.8 million positions) and another 23.5 million high-confidence ancestral alleles were novel, expanding the available reference list to improve the accuracies of genetic analyses involving ancestral alleles. The high concordance of the results with previous studies implies that our approach using genomic sequence variants and a likelihood ratio test to determine ancestral alleles is appropriate. Considering the high concordance of ancestral alleles across studies, the ancestral alleles determined in this study including those not previously listed, particularly those with high-probability estimates, may be used for further genetic analyses with reasonable accuracy. Our approach that used predetermined variants in species and the likelihood ratio test to determine ancestral alleles is applicable to other species for which sequence level genotypes are available.","PeriodicalId":55120,"journal":{"name":"Genetics Selection Evolution","volume":null,"pages":null},"PeriodicalIF":3.6000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genetics Selection Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s12711-024-00879-6","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRICULTURE, DAIRY & ANIMAL SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
The study of ancestral alleles provides insights into the evolutionary history, selection, and genetic structures of a population. In cattle, ancestral alleles are widely used in genetic analyses, including the detection of signatures of selection, determination of breed ancestry, and identification of admixture. Having a comprehensive list of ancestral alleles is expected to improve the accuracy of these genetic analyses. However, the list of ancestral alleles in cattle, especially at the whole genome sequence level, is far from complete. In fact, the current largest list of ancestral alleles (~ 42 million) represents less than 28% of the total number of detected variants in cattle. To address this issue and develop a genomic resource for evolutionary studies, we determined ancestral alleles in cattle by comparing prior derived whole-genome sequence variants to an out-species group using a population-based likelihood ratio test. Our study determined and makes available the largest list of ancestral alleles in cattle to date (70.1 million) and includes 2.3 million on the X chromosome. There was high concordance (97.6%) of the determined ancestral alleles with those from previous studies when only high-probability ancestral alleles were considered (29.8 million positions) and another 23.5 million high-confidence ancestral alleles were novel, expanding the available reference list to improve the accuracies of genetic analyses involving ancestral alleles. The high concordance of the results with previous studies implies that our approach using genomic sequence variants and a likelihood ratio test to determine ancestral alleles is appropriate. Considering the high concordance of ancestral alleles across studies, the ancestral alleles determined in this study including those not previously listed, particularly those with high-probability estimates, may be used for further genetic analyses with reasonable accuracy. Our approach that used predetermined variants in species and the likelihood ratio test to determine ancestral alleles is applicable to other species for which sequence level genotypes are available.
期刊介绍:
Genetics Selection Evolution invites basic, applied and methodological content that will aid the current understanding and the utilization of genetic variability in domestic animal species. Although the focus is on domestic animal species, research on other species is invited if it contributes to the understanding of the use of genetic variability in domestic animals. Genetics Selection Evolution publishes results from all levels of study, from the gene to the quantitative trait, from the individual to the population, the breed or the species. Contributions concerning both the biological approach, from molecular genetics to quantitative genetics, as well as the mathematical approach, from population genetics to statistics, are welcome. Specific areas of interest include but are not limited to: gene and QTL identification, mapping and characterization, analysis of new phenotypes, high-throughput SNP data analysis, functional genomics, cytogenetics, genetic diversity of populations and breeds, genetic evaluation, applied and experimental selection, genomic selection, selection efficiency, and statistical methodology for the genetic analysis of phenotypes with quantitative and mixed inheritance.