{"title":"Differentially large fields","authors":"Omar León Sánchez, Marcus Tressl","doi":"10.2140/ant.2024.18.249","DOIUrl":null,"url":null,"abstract":"<p>We introduce the notion of <span>differential largeness </span>for fields equipped with several commuting derivations (as an analogue to largeness of fields). We lay out the foundations of this new class of “tame” differential fields. We state several characterizations and exhibit plenty of examples and applications. Our results strongly indicate that differentially large fields will play a key role in differential field arithmetic. For instance, we characterize differential largeness in terms of being existentially closed in their power series field (furnished with natural derivations), we give explicit constructions of differentially large fields in terms of iterated powers series, we prove that the class of differentially large fields is elementary, and we show that differential largeness is preserved under algebraic extensions, therefore showing that their algebraic closure is differentially closed. </p>","PeriodicalId":50828,"journal":{"name":"Algebra & Number Theory","volume":"236 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algebra & Number Theory","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.2140/ant.2024.18.249","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
We introduce the notion of differential largeness for fields equipped with several commuting derivations (as an analogue to largeness of fields). We lay out the foundations of this new class of “tame” differential fields. We state several characterizations and exhibit plenty of examples and applications. Our results strongly indicate that differentially large fields will play a key role in differential field arithmetic. For instance, we characterize differential largeness in terms of being existentially closed in their power series field (furnished with natural derivations), we give explicit constructions of differentially large fields in terms of iterated powers series, we prove that the class of differentially large fields is elementary, and we show that differential largeness is preserved under algebraic extensions, therefore showing that their algebraic closure is differentially closed.
期刊介绍:
ANT’s inclusive definition of algebra and number theory allows it to print research covering a wide range of subtopics, including algebraic and arithmetic geometry. ANT publishes high-quality articles of interest to a broad readership, at a level surpassing all but the top four or five mathematics journals. It exists in both print and electronic forms.
The policies of ANT are set by the editorial board — a group of working mathematicians — rather than by a profit-oriented company, so they will remain friendly to mathematicians'' interests. In particular, they will promote broad dissemination, easy electronic access, and permissive use of content to the greatest extent compatible with survival of the journal. All electronic content becomes free and open access 5 years after publication.