{"title":"Interplay of surface and bulk elasticity in morphological stability of ultra-thin film coatings","authors":"Gleb Shuvalov, Sergey Kostyrko, Holm Altenbach","doi":"10.1007/s00161-024-01279-3","DOIUrl":null,"url":null,"abstract":"<div><p>This paper explores the interplay of surface and bulk elasticity on the evolution of surface relief within nanosized thin-film coatings, driven by the relaxation of misfit stresses through surface diffusion mechanism. The proposed theoretical approach incorporates the constitutive equations of surface elasticity theory developed by Gurtin and Murdoch into the Asaro–Tiller–Grinfeld model of morphological instability, which takes into account the stress sensitivity of the local gradient in chemical potential driving mass transport along the perturbed surface. Linear stability analysis, based on the solution of the linearized evolution equation representing the amplitude change of surface perturbation with time, predicts the conditions leading to the early growth of surface topological defects. These conditions depend on factors, such as the initial shape and wavelength of the surface undulations, misfit stresses, tension at the surface and interface, and the elastic properties governing the deformation of the surface, interface, film, and substrate.</p></div>","PeriodicalId":525,"journal":{"name":"Continuum Mechanics and Thermodynamics","volume":"36 3","pages":"503 - 523"},"PeriodicalIF":1.9000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Continuum Mechanics and Thermodynamics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00161-024-01279-3","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0
Abstract
This paper explores the interplay of surface and bulk elasticity on the evolution of surface relief within nanosized thin-film coatings, driven by the relaxation of misfit stresses through surface diffusion mechanism. The proposed theoretical approach incorporates the constitutive equations of surface elasticity theory developed by Gurtin and Murdoch into the Asaro–Tiller–Grinfeld model of morphological instability, which takes into account the stress sensitivity of the local gradient in chemical potential driving mass transport along the perturbed surface. Linear stability analysis, based on the solution of the linearized evolution equation representing the amplitude change of surface perturbation with time, predicts the conditions leading to the early growth of surface topological defects. These conditions depend on factors, such as the initial shape and wavelength of the surface undulations, misfit stresses, tension at the surface and interface, and the elastic properties governing the deformation of the surface, interface, film, and substrate.
期刊介绍:
This interdisciplinary journal provides a forum for presenting new ideas in continuum and quasi-continuum modeling of systems with a large number of degrees of freedom and sufficient complexity to require thermodynamic closure. Major emphasis is placed on papers attempting to bridge the gap between discrete and continuum approaches as well as micro- and macro-scales, by means of homogenization, statistical averaging and other mathematical tools aimed at the judicial elimination of small time and length scales. The journal is particularly interested in contributions focusing on a simultaneous description of complex systems at several disparate scales. Papers presenting and explaining new experimental findings are highly encouraged. The journal welcomes numerical studies aimed at understanding the physical nature of the phenomena.
Potential subjects range from boiling and turbulence to plasticity and earthquakes. Studies of fluids and solids with nonlinear and non-local interactions, multiple fields and multi-scale responses, nontrivial dissipative properties and complex dynamics are expected to have a strong presence in the pages of the journal. An incomplete list of featured topics includes: active solids and liquids, nano-scale effects and molecular structure of materials, singularities in fluid and solid mechanics, polymers, elastomers and liquid crystals, rheology, cavitation and fracture, hysteresis and friction, mechanics of solid and liquid phase transformations, composite, porous and granular media, scaling in statics and dynamics, large scale processes and geomechanics, stochastic aspects of mechanics. The journal would also like to attract papers addressing the very foundations of thermodynamics and kinetics of continuum processes. Of special interest are contributions to the emerging areas of biophysics and biomechanics of cells, bones and tissues leading to new continuum and thermodynamical models.