Quantification of derivatized phenylalanine and tyrosine in dried blood spots using liquid chromatography with tandem spectrometry for newborn screening of phenylketonuria.
{"title":"Quantification of derivatized phenylalanine and tyrosine in dried blood spots using liquid chromatography with tandem spectrometry for newborn screening of phenylketonuria.","authors":"Tsai-Hui Duh, Yu-Ching Liang, Po Tsun Shen, Yi-Wen Ke, Yan-Tian Nian, Shih-Shin Liang","doi":"10.1177/14690667241229626","DOIUrl":null,"url":null,"abstract":"<p><p>Phenylketonuria (PKU) is an autosomal genetic disorder caused by a deficiency of the phenylalanine hydroxylase (PAH) enzyme. The lack of PAH results in the inability of phenylalanine (PHE) to transform into tyrosine (TYR). Consequently, this leads to the accumulation of PHE in the blood samples of newborns causing metabolic diseases such as irreversible neurological problems. An analysis was required for determining the values of PHE and TYR in blood samples from newborn babies. In this study, therefore, we developed a derivatized method to monitor PHE and TYR in plasma samples using liquid phase chromatography linked with quadrupole mass spectrometry. Accessible formaldehyde isotopes and cyanoborohydride were used to react with PHE and TYR amino groups to generate <i>h<sub>2</sub></i>-formaldehyde-modified PHE and TYR (as standards) and <i>d<sub>2</sub></i>-formaldehyde-modified PHE and TYR (as internal standards). We used tandem mass spectrometry for multiple reaction monitoring. We demonstrated a derivatized method suitable for the PKU screening of newborns. The recoveries for PHE and TYR were 85% and 90%, respectively. Furthermore, we compared the values of PHE and TYR in different human plasma sample storage methods, including direct plasma and dried blood spots, and the results showed no significant difference.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1177/14690667241229626","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/6 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Phenylketonuria (PKU) is an autosomal genetic disorder caused by a deficiency of the phenylalanine hydroxylase (PAH) enzyme. The lack of PAH results in the inability of phenylalanine (PHE) to transform into tyrosine (TYR). Consequently, this leads to the accumulation of PHE in the blood samples of newborns causing metabolic diseases such as irreversible neurological problems. An analysis was required for determining the values of PHE and TYR in blood samples from newborn babies. In this study, therefore, we developed a derivatized method to monitor PHE and TYR in plasma samples using liquid phase chromatography linked with quadrupole mass spectrometry. Accessible formaldehyde isotopes and cyanoborohydride were used to react with PHE and TYR amino groups to generate h2-formaldehyde-modified PHE and TYR (as standards) and d2-formaldehyde-modified PHE and TYR (as internal standards). We used tandem mass spectrometry for multiple reaction monitoring. We demonstrated a derivatized method suitable for the PKU screening of newborns. The recoveries for PHE and TYR were 85% and 90%, respectively. Furthermore, we compared the values of PHE and TYR in different human plasma sample storage methods, including direct plasma and dried blood spots, and the results showed no significant difference.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.