Anamaria Jurcau, Aurel Simion, Maria Carolina Jurcau
{"title":"Emerging antibody-based therapies for Huntington's disease: current status and perspectives for future development.","authors":"Anamaria Jurcau, Aurel Simion, Maria Carolina Jurcau","doi":"10.1080/14737175.2024.2314183","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Being an inherited neurodegenerative disease with an identifiable genetic defect, Huntington's disease (HD) is a suitable candidate for early intervention, possibly even in the pre-symptomatic stage. Our recent advances in elucidating the pathogenesis of HD have revealed a series of novel potential therapeutic targets, among which immunotherapies are actively pursued in preclinical experiments.</p><p><strong>Areas covered: </strong>This review focuses on the potential of antibody-based treatments targeting various epitopes (of mutant huntingtin as well as phosphorylated tau) that are currently evaluated in vitro and in animal experiments. The references used in this review were retrieved from the PubMed database, searching for immunotherapies in HD, and clinical trial registries were reviewed for molecules already evaluated in clinical trials.</p><p><strong>Expert opinion: </strong>Antibody-based therapies have raised considerable interest in a series of neurodegenerative diseases characterized by deposition of aggregated of aberrantly folded proteins, HD included. Intrabodies and nanobodies can interact with mutant huntingtin inside the nervous cells. However, the conflicting results obtained with some of these intrabodies highlight the need for proper choice of epitopes and for developing animal models more closely mimicking human disease. Approval of these strategies will require a considerable financial and logistic effort on behalf of healthcare systems.</p>","PeriodicalId":12190,"journal":{"name":"Expert Review of Neurotherapeutics","volume":" ","pages":"299-312"},"PeriodicalIF":3.4000,"publicationDate":"2024-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Expert Review of Neurotherapeutics","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/14737175.2024.2314183","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/7 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"CLINICAL NEUROLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: Being an inherited neurodegenerative disease with an identifiable genetic defect, Huntington's disease (HD) is a suitable candidate for early intervention, possibly even in the pre-symptomatic stage. Our recent advances in elucidating the pathogenesis of HD have revealed a series of novel potential therapeutic targets, among which immunotherapies are actively pursued in preclinical experiments.
Areas covered: This review focuses on the potential of antibody-based treatments targeting various epitopes (of mutant huntingtin as well as phosphorylated tau) that are currently evaluated in vitro and in animal experiments. The references used in this review were retrieved from the PubMed database, searching for immunotherapies in HD, and clinical trial registries were reviewed for molecules already evaluated in clinical trials.
Expert opinion: Antibody-based therapies have raised considerable interest in a series of neurodegenerative diseases characterized by deposition of aggregated of aberrantly folded proteins, HD included. Intrabodies and nanobodies can interact with mutant huntingtin inside the nervous cells. However, the conflicting results obtained with some of these intrabodies highlight the need for proper choice of epitopes and for developing animal models more closely mimicking human disease. Approval of these strategies will require a considerable financial and logistic effort on behalf of healthcare systems.
期刊介绍:
Expert Review of Neurotherapeutics (ISSN 1473-7175) provides expert reviews on the use of drugs and medicines in clinical neurology and neuropsychiatry. Coverage includes disease management, new medicines and drugs in neurology, therapeutic indications, diagnostics, medical treatment guidelines and neurological diseases such as stroke, epilepsy, Alzheimer''s and Parkinson''s.
Comprehensive coverage in each review is complemented by the unique Expert Review format and includes the following sections:
Expert Opinion - a personal view of the data presented in the article, a discussion on the developments that are likely to be important in the future, and the avenues of research likely to become exciting as further studies yield more detailed results
Article Highlights – an executive summary of the author’s most critical points