Phylogenetic conservation of the interdependent homeostatic relationship of sleep regulation and redox metabolism.

IF 1.7 3区 生物学 Q4 PHYSIOLOGY Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology Pub Date : 2024-06-01 Epub Date: 2024-02-07 DOI:10.1007/s00360-023-01530-4
Aslihan Terzi, Keri J Ngo, Philippe Mourrain
{"title":"Phylogenetic conservation of the interdependent homeostatic relationship of sleep regulation and redox metabolism.","authors":"Aslihan Terzi, Keri J Ngo, Philippe Mourrain","doi":"10.1007/s00360-023-01530-4","DOIUrl":null,"url":null,"abstract":"<p><p>Sleep is an essential and evolutionarily conserved process that affects many biological functions that are also strongly regulated by cellular metabolism. The interdependence between sleep homeostasis and redox metabolism, in particular, is such that sleep deprivation causes redox metabolic imbalances in the form of over-production of ROS. Likewise (and vice versa), accumulation of ROS leads to greater sleep pressure. Thus, it is theorized that one of the functions of sleep is to act as the brain's \"antioxidant\" at night by clearing oxidation built up from daily stress of the active day phase. In this review, we will highlight evidence linking sleep homeostasis and regulation to redox metabolism by discussing (1) the bipartite role that sleep-wake neuropeptides and hormones have in redox metabolism through comparing cross-species cellular and molecular mechanisms, (2) the evolutionarily metabolic changes that accompanied the development of sleep loss in cavefish, and finally, (3) some of the challenges of uncovering the cellular mechanism underpinning how ROS accumulation builds sleep pressure and cellularly, how this pressure is cleared.</p>","PeriodicalId":56033,"journal":{"name":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","volume":" ","pages":"241-252"},"PeriodicalIF":1.7000,"publicationDate":"2024-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11233307/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Comparative Physiology B-Biochemical Systems and Environmental Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00360-023-01530-4","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/7 0:00:00","PubModel":"Epub","JCR":"Q4","JCRName":"PHYSIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Sleep is an essential and evolutionarily conserved process that affects many biological functions that are also strongly regulated by cellular metabolism. The interdependence between sleep homeostasis and redox metabolism, in particular, is such that sleep deprivation causes redox metabolic imbalances in the form of over-production of ROS. Likewise (and vice versa), accumulation of ROS leads to greater sleep pressure. Thus, it is theorized that one of the functions of sleep is to act as the brain's "antioxidant" at night by clearing oxidation built up from daily stress of the active day phase. In this review, we will highlight evidence linking sleep homeostasis and regulation to redox metabolism by discussing (1) the bipartite role that sleep-wake neuropeptides and hormones have in redox metabolism through comparing cross-species cellular and molecular mechanisms, (2) the evolutionarily metabolic changes that accompanied the development of sleep loss in cavefish, and finally, (3) some of the challenges of uncovering the cellular mechanism underpinning how ROS accumulation builds sleep pressure and cellularly, how this pressure is cleared.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
睡眠调节与氧化还原代谢之间相互依存的平衡关系的系统发育保护。
睡眠是一个重要的进化过程,影响着许多生物功能,而这些功能也受到细胞新陈代谢的强烈调控。睡眠平衡与氧化还原代谢之间的相互依存关系尤其明显,睡眠不足会导致氧化还原代谢失衡,表现为过量产生 ROS。同样(反之亦然),ROS 的积累会导致更大的睡眠压力。因此,有理论认为,睡眠的功能之一是在夜间充当大脑的 "抗氧化剂",清除白天活跃阶段的日常压力所积累的氧化物。在这篇综述中,我们将通过讨论(1)睡眠-觉醒神经肽和激素通过比较跨物种的细胞和分子机制在氧化还原代谢中的双重作用,(2)伴随洞穴鱼睡眠丧失的发展而发生的进化代谢变化,以及(3)揭示支持 ROS 积累如何形成睡眠压力以及细胞如何清除这种压力的细胞机制所面临的一些挑战,重点介绍将睡眠稳态和调节与氧化还原代谢联系起来的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.90
自引率
0.00%
发文量
51
审稿时长
3.5 months
期刊介绍: The Journal of Comparative Physiology B publishes peer-reviewed original articles and reviews on the comparative physiology of invertebrate and vertebrate animals. Special emphasis is placed on integrative studies that elucidate mechanisms at the whole-animal, organ, tissue, cellular and/or molecular levels. Review papers report on the current state of knowledge in an area of comparative physiology, and directions in which future research is needed.
期刊最新文献
Oxidative stress across multiple tissues in house sparrows (Passer domesticus) acclimated to warm, stable cold, and unpredictable cold thermal treatments. Metabolic rate and saliva cortisol concentrations in socially housed adolescent guinea pigs. Metabolic effects of physical exercise on zebrafish (Danio rerio) fed a high-fat diet. Effects of in ovo supplementation of selenium (Se) and zinc (zn) on hatchability and production performance of broiler chickens. Microbial urea-nitrogen recycling in arctic ground squirrels: the effect of ambient temperature of hibernation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1