Shao-Long Li, Bo Liu, Qi-Wei Liao, Sen Yang, Chen-De He, Xue-Feng Guang
{"title":"Extra-Cavity Image Registration via the Aortic Root During Left Ventricular Mapping and Ablation.","authors":"Shao-Long Li, Bo Liu, Qi-Wei Liao, Sen Yang, Chen-De He, Xue-Feng Guang","doi":"10.14744/AnatolJCardiol.2023.3264","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Computed tomography (CT) image integration is of limited use in left ventricular (LV) ablation due to inadequate accuracy of registration. The current study aimed to investigate the accuracy and feasibility of extra-cavity LV image registration via the coronary cusp.</p><p><strong>Methods: </strong>Consecutive patients were enrolled as the validation group (n = 41) and feasibility group (n = 48). After extra-cavity registration via the aortic root, the LV anatomy derived from CT image was activated and moved into real space. Accuracy of LV anatomy via this registration method was verified by intracardiac echocardiography reconstruction in the validation group and tested further in the feasibility group via measuring the location differences (<3 mm) and volume difference (<8 mL).</p><p><strong>Results: </strong>In validation group, the LV volume of CT image and ICE map were comparable (113.6 ± 15.5 mL vs. 109.0 ± 15.3 mL, P =.27), and the location difference was 3.1 ± 1.1 mm at LV summit, 1.8 ± 0.9 mm at the free wall, and 1.8 ± 0.7 mm at the LV apex. There was a mean of 2.9 ± 1.2 mm and 3.0 ± 1.0 mm length difference in anterior PM and posterior PM, the position difference of the PM's base was 2.8 ± 0.9 mm for anterior PM and 2.2 ± 0.9 mm for posterior PM. In feasibility group, the distance differences of LV summit, LV septum, LV apex, and LV free averaged 1.8 ± 0.8 mm, 1.5 ± 0.7 mm, 1.4 ± 0.6 mm, 1.3 ± 0.7 mm, respectively. Compared with validation group, acute success (100% vs. 96.5%, P =.51), complications rate (4.9% vs. 2.0%, P = 0.59) and fluoroscopic time (1.6 ± 1.1 vs. 1.9 ± 1.6 minutes, P =.30) exhibited no significant difference, but was significantly reduced with procedure time (74.5 ± 8.1 vs. 61.2 ± 9.5 minutes, P <.001) with CT image registration only.</p><p><strong>Conclusion: </strong>LV mapping and ablation could be successfully achieved by extra-cavity registration via coronary cusp without needing positions within LV beforehand.</p>","PeriodicalId":7835,"journal":{"name":"Anatolian Journal of Cardiology","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11017683/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Anatolian Journal of Cardiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.14744/AnatolJCardiol.2023.3264","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Computed tomography (CT) image integration is of limited use in left ventricular (LV) ablation due to inadequate accuracy of registration. The current study aimed to investigate the accuracy and feasibility of extra-cavity LV image registration via the coronary cusp.
Methods: Consecutive patients were enrolled as the validation group (n = 41) and feasibility group (n = 48). After extra-cavity registration via the aortic root, the LV anatomy derived from CT image was activated and moved into real space. Accuracy of LV anatomy via this registration method was verified by intracardiac echocardiography reconstruction in the validation group and tested further in the feasibility group via measuring the location differences (<3 mm) and volume difference (<8 mL).
Results: In validation group, the LV volume of CT image and ICE map were comparable (113.6 ± 15.5 mL vs. 109.0 ± 15.3 mL, P =.27), and the location difference was 3.1 ± 1.1 mm at LV summit, 1.8 ± 0.9 mm at the free wall, and 1.8 ± 0.7 mm at the LV apex. There was a mean of 2.9 ± 1.2 mm and 3.0 ± 1.0 mm length difference in anterior PM and posterior PM, the position difference of the PM's base was 2.8 ± 0.9 mm for anterior PM and 2.2 ± 0.9 mm for posterior PM. In feasibility group, the distance differences of LV summit, LV septum, LV apex, and LV free averaged 1.8 ± 0.8 mm, 1.5 ± 0.7 mm, 1.4 ± 0.6 mm, 1.3 ± 0.7 mm, respectively. Compared with validation group, acute success (100% vs. 96.5%, P =.51), complications rate (4.9% vs. 2.0%, P = 0.59) and fluoroscopic time (1.6 ± 1.1 vs. 1.9 ± 1.6 minutes, P =.30) exhibited no significant difference, but was significantly reduced with procedure time (74.5 ± 8.1 vs. 61.2 ± 9.5 minutes, P <.001) with CT image registration only.
Conclusion: LV mapping and ablation could be successfully achieved by extra-cavity registration via coronary cusp without needing positions within LV beforehand.
期刊介绍:
The Anatolian Journal of Cardiology is an international monthly periodical on cardiology published on independent, unbiased, double-blinded and peer-review principles. The journal’s publication language is English.
The Anatolian Journal of Cardiology aims to publish qualified and original clinical, experimental and basic research on cardiology at the international level. The journal’s scope also covers editorial comments, reviews of innovations in medical education and practice, case reports, original images, scientific letters, educational articles, letters to the editor, articles on publication ethics, diagnostic puzzles, and issues in social cardiology.
The target readership includes academic members, specialists, residents, and general practitioners working in the fields of adult cardiology, pediatric cardiology, cardiovascular surgery and internal medicine.