{"title":"Population pharmacokinetics of cyclosporine A in pediatric patients with thalassemia undergoing allogeneic hematopoietic stem cell transplantation.","authors":"Rongda Cai, Limin Zhang, Tingqing Wu, Yumei Huang, Jiejiu Lu, Tianmin Huang, Yun Wu, Dongni Wu, Jianying Qi, Lulu Niu, Yang Xiao, Xin Chen, Yongjun Liu, Yilin Luo, Taotao Liu","doi":"10.1007/s00228-024-03641-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>To establish the population pharmacokinetics (PPK) model of cyclosporine A(CsA) in pediatric patients with thalassemia undergoing allogeneic hematopoietic stem cell transplantation (HSCT), aiming at providing a reference for clinical dose individualization of CsA.</p><p><strong>Methods: </strong>Children with thalassemia who underwent allogeneic HSCT were enrolled retrospectively. The PPK structural model and the random variable model of CsA were established on NONMEN. And goodness of fit plots (GOFs), visual predictive check (VPC), and bootstrap and normalized prediction distribution errors (NPDE) were used to evaluate the final model.</p><p><strong>Results: </strong>A one-compartment model with first-order absorption was employed to fit the base model. A total of 74 pediatric patients and 600 observations of whole blood concentration were included. The final model included weight (WT) in clearance (CL), alongside post-operative day (POD), fluconazole (FLUC), voriconazole (VORI), posaconazole (POSA), and red blood cell count (RBC) significantly. All the model evaluations were passed.</p><p><strong>Conclusion: </strong>In the PPK model based on the pediatric cohort on CsA with thalassemia undergoing allogeneic HSCT, WT, POD, FLUC, VORI, POSA, and RBC were found to be the significant factors influencing CL of CsA. The reliability and robustness of the final model were excellent. It is expected that the PPK model can assist in individualizing dosing strategy clinically.</p>","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00228-024-03641-5","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/8 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: To establish the population pharmacokinetics (PPK) model of cyclosporine A(CsA) in pediatric patients with thalassemia undergoing allogeneic hematopoietic stem cell transplantation (HSCT), aiming at providing a reference for clinical dose individualization of CsA.
Methods: Children with thalassemia who underwent allogeneic HSCT were enrolled retrospectively. The PPK structural model and the random variable model of CsA were established on NONMEN. And goodness of fit plots (GOFs), visual predictive check (VPC), and bootstrap and normalized prediction distribution errors (NPDE) were used to evaluate the final model.
Results: A one-compartment model with first-order absorption was employed to fit the base model. A total of 74 pediatric patients and 600 observations of whole blood concentration were included. The final model included weight (WT) in clearance (CL), alongside post-operative day (POD), fluconazole (FLUC), voriconazole (VORI), posaconazole (POSA), and red blood cell count (RBC) significantly. All the model evaluations were passed.
Conclusion: In the PPK model based on the pediatric cohort on CsA with thalassemia undergoing allogeneic HSCT, WT, POD, FLUC, VORI, POSA, and RBC were found to be the significant factors influencing CL of CsA. The reliability and robustness of the final model were excellent. It is expected that the PPK model can assist in individualizing dosing strategy clinically.