Electrostatic properties of human germlines and biodistribution of small biologics.

IF 5.6 2区 医学 Q1 MEDICINE, RESEARCH & EXPERIMENTAL mAbs Pub Date : 2024-01-01 Epub Date: 2024-02-09 DOI:10.1080/19420862.2024.2311991
Leticia Maria De Souza Cordeiro, Kelley Christine Atkinson, Argin Aivazian, Patrick Frank Joyce, Fang Jia, Alessandro Mascioni
{"title":"Electrostatic properties of human germlines and biodistribution of small biologics.","authors":"Leticia Maria De Souza Cordeiro, Kelley Christine Atkinson, Argin Aivazian, Patrick Frank Joyce, Fang Jia, Alessandro Mascioni","doi":"10.1080/19420862.2024.2311991","DOIUrl":null,"url":null,"abstract":"<p><p>Off-target biodistribution of biologics bears important toxicological consequences. Antibody fragments intended for use as vectors of cytotoxic payloads (e.g. antibody-drug conjugates, radiotherapy) can accumulate at clearance organs like kidneys and liver, where they can cause dose-limiting toxicities. Renal and hepatic uptakes are known to be affected by protein electrostatics, which promote protein internalization through pinocytosis. Using minibodies as a model of an antibody fragment lacking FcRn recycling, we compared the biodistributions of leads with different degrees of accumulation at the kidney and liver. We identified a positive electrostatic patch highly conserved in a germline family very commonly used in the humanization of approved biologics. Neutralization of this patch led to a drastic reduction in the kidney uptake, leading to a biodistribution more favorable to the delivery of highly cytotoxic payloads. Next, we conducted a high throughput study of the electrostatic properties for all combinations of VH and VL germlines. This analysis shows how different VH/VL combinations exhibit varying tendencies to create electrostatic patches, resulting in Fv variants with different isoelectric points. Our work emphasizes the importance of carefully selecting germlines for humanization with optimal electrostatic properties in order to control the unspecific tissue uptake of low molecular weight biologics.</p>","PeriodicalId":18206,"journal":{"name":"mAbs","volume":"16 1","pages":"2311991"},"PeriodicalIF":5.6000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10860348/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"mAbs","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/19420862.2024.2311991","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/9 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

Abstract

Off-target biodistribution of biologics bears important toxicological consequences. Antibody fragments intended for use as vectors of cytotoxic payloads (e.g. antibody-drug conjugates, radiotherapy) can accumulate at clearance organs like kidneys and liver, where they can cause dose-limiting toxicities. Renal and hepatic uptakes are known to be affected by protein electrostatics, which promote protein internalization through pinocytosis. Using minibodies as a model of an antibody fragment lacking FcRn recycling, we compared the biodistributions of leads with different degrees of accumulation at the kidney and liver. We identified a positive electrostatic patch highly conserved in a germline family very commonly used in the humanization of approved biologics. Neutralization of this patch led to a drastic reduction in the kidney uptake, leading to a biodistribution more favorable to the delivery of highly cytotoxic payloads. Next, we conducted a high throughput study of the electrostatic properties for all combinations of VH and VL germlines. This analysis shows how different VH/VL combinations exhibit varying tendencies to create electrostatic patches, resulting in Fv variants with different isoelectric points. Our work emphasizes the importance of carefully selecting germlines for humanization with optimal electrostatic properties in order to control the unspecific tissue uptake of low molecular weight biologics.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
人类种系的静电特性与小型生物制剂的生物分布。
生物制剂的脱靶生物分布具有重要的毒理学后果。用作细胞毒性有效载荷载体的抗体片段(如抗体-药物共轭物、放射治疗)可能会在肾脏和肝脏等清除器官积聚,从而导致剂量限制性毒性。众所周知,肾脏和肝脏的吸收会受到蛋白质静电的影响,静电会通过针吞作用促进蛋白质内化。我们以缺乏 FcRn 循环的抗体片段迷你体为模型,比较了在肾脏和肝脏有不同程度蓄积的引线的生物分布。我们在一个种系家族中发现了一个高度保守的正静电补丁,该家族常用于已获批准的生物制剂的人源化。中和这一补丁可大幅减少肾脏的吸收,从而使生物分布更有利于高细胞毒性有效载荷的递送。接下来,我们对所有 VH 和 VL 种系组合的静电特性进行了高通量研究。这项分析表明,不同的 VH/VL 组合在产生静电斑块方面表现出不同的倾向,从而导致 Fv 变体具有不同的等电点。我们的工作强调了为控制低分子量生物制剂的非特异性组织吸收,精心选择具有最佳静电特性的种系进行人源化的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
mAbs
mAbs 工程技术-仪器仪表
CiteScore
10.70
自引率
11.30%
发文量
77
审稿时长
6-12 weeks
期刊介绍: mAbs is a multi-disciplinary journal dedicated to the art and science of antibody research and development. The journal has a strong scientific and medical focus, but also strives to serve a broader readership. The articles are thus of interest to scientists, clinical researchers, and physicians, as well as the wider mAb community, including our readers involved in technology transfer, legal issues, investment, strategic planning and the regulation of therapeutics.
期刊最新文献
T cell margination: investigating the detour of T cells following forimtamig treatment in humanized mice. Analysis of how antigen mutations disrupt antibody binding interactions toward enabling rapid and reliable antibody repurposing. Antibodies to watch in 2025. Online native hydrophobic interaction chromatography-mass spectrometry of antibody-drug conjugates. Prediction of protein biophysical traits from limited data: a case study on nanobody thermostability through NanoMelt.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1