Uncertainty directed factorial clinical trials.

IF 1.8 3区 数学 Q3 MATHEMATICAL & COMPUTATIONAL BIOLOGY Biostatistics Pub Date : 2024-07-01 DOI:10.1093/biostatistics/kxad036
Gopal Kotecha, Steffen Ventz, Sandra Fortini, Lorenzo Trippa
{"title":"Uncertainty directed factorial clinical trials.","authors":"Gopal Kotecha, Steffen Ventz, Sandra Fortini, Lorenzo Trippa","doi":"10.1093/biostatistics/kxad036","DOIUrl":null,"url":null,"abstract":"<p><p>The development and evaluation of novel treatment combinations is a key component of modern clinical research. The primary goals of factorial clinical trials of treatment combinations range from the estimation of intervention-specific effects, or the discovery of potential synergies, to the identification of combinations with the highest response probabilities. Most factorial studies use balanced or block randomization, with an equal number of patients assigned to each treatment combination, irrespective of the specific goals of the trial. Here, we introduce a class of Bayesian response-adaptive designs for factorial clinical trials with binary outcomes. The study design was developed using Bayesian decision-theoretic arguments and adapts the randomization probabilities to treatment combinations during the enrollment period based on the available data. Our approach enables the investigator to specify a utility function representative of the aims of the trial, and the Bayesian response-adaptive randomization algorithm aims to maximize this utility function. We considered several utility functions and factorial designs tailored to them. Then, we conducted a comparative simulation study to illustrate relevant differences of key operating characteristics across the resulting designs. We also investigated the asymptotic behavior of the proposed adaptive designs. We also used data summaries from three recent factorial trials in perioperative care, smoking cessation, and infectious disease prevention to define realistic simulation scenarios and illustrate advantages of the introduced trial designs compared to other study designs.</p>","PeriodicalId":55357,"journal":{"name":"Biostatistics","volume":" ","pages":"833-851"},"PeriodicalIF":1.8000,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11247193/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biostatistics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxad036","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The development and evaluation of novel treatment combinations is a key component of modern clinical research. The primary goals of factorial clinical trials of treatment combinations range from the estimation of intervention-specific effects, or the discovery of potential synergies, to the identification of combinations with the highest response probabilities. Most factorial studies use balanced or block randomization, with an equal number of patients assigned to each treatment combination, irrespective of the specific goals of the trial. Here, we introduce a class of Bayesian response-adaptive designs for factorial clinical trials with binary outcomes. The study design was developed using Bayesian decision-theoretic arguments and adapts the randomization probabilities to treatment combinations during the enrollment period based on the available data. Our approach enables the investigator to specify a utility function representative of the aims of the trial, and the Bayesian response-adaptive randomization algorithm aims to maximize this utility function. We considered several utility functions and factorial designs tailored to them. Then, we conducted a comparative simulation study to illustrate relevant differences of key operating characteristics across the resulting designs. We also investigated the asymptotic behavior of the proposed adaptive designs. We also used data summaries from three recent factorial trials in perioperative care, smoking cessation, and infectious disease prevention to define realistic simulation scenarios and illustrate advantages of the introduced trial designs compared to other study designs.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
不确定性指导的因子临床试验。
开发和评估新型治疗组合是现代临床研究的重要组成部分。对治疗组合进行因子临床试验的主要目的包括估算特定干预措施的效果、发现潜在的协同作用以及确定具有最高应答概率的治疗组合。不管试验的具体目标是什么,大多数因子研究都采用平衡随机化或分块随机化,将相同数量的患者分配到每种治疗组合中。在此,我们介绍一类贝叶斯反应自适应设计,用于二元结果的因子临床试验。该研究设计是利用贝叶斯决策理论论据开发出来的,它能根据现有数据调整入组期间治疗组合的随机化概率。我们的方法使研究者能够指定一个代表试验目的的效用函数,而贝叶斯反应自适应随机化算法的目的就是使该效用函数最大化。我们考虑了几种效用函数和针对它们的因子设计。然后,我们进行了一项比较模拟研究,以说明不同设计的关键运行特征之间的相关差异。我们还研究了所提出的自适应设计的渐进行为。我们还使用了最近在围手术期护理、戒烟和传染病预防方面进行的三项因子试验的数据摘要,以确定现实的模拟场景,并说明所引入的试验设计与其他研究设计相比的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biostatistics
Biostatistics 生物-数学与计算生物学
CiteScore
5.10
自引率
4.80%
发文量
45
审稿时长
6-12 weeks
期刊介绍: Among the important scientific developments of the 20th century is the explosive growth in statistical reasoning and methods for application to studies of human health. Examples include developments in likelihood methods for inference, epidemiologic statistics, clinical trials, survival analysis, and statistical genetics. Substantive problems in public health and biomedical research have fueled the development of statistical methods, which in turn have improved our ability to draw valid inferences from data. The objective of Biostatistics is to advance statistical science and its application to problems of human health and disease, with the ultimate goal of advancing the public''s health.
期刊最新文献
A semiparametric Gaussian mixture model for chest CT-based 3D blood vessel reconstruction. Simultaneous clustering and estimation of networks in multiple graphical models. A joint normal-ordinal (probit) model for ordinal and continuous longitudinal data. A modeling framework for detecting and leveraging node-level information in Bayesian network inference. A marginal structural model for normal tissue complication probability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1