Patrik Pinczés , Attila Hirn , István Apáthy , Sándor Deme , Olga Ivanova , Tamás Pázmándi , Vyacheslav Shurshakov
{"title":"Automatic measurements with the Pille-ISS thermoluminescent dosimeter system on board the International Space Station (2003–2021)","authors":"Patrik Pinczés , Attila Hirn , István Apáthy , Sándor Deme , Olga Ivanova , Tamás Pázmándi , Vyacheslav Shurshakov","doi":"10.1016/j.lssr.2024.01.007","DOIUrl":null,"url":null,"abstract":"<div><p>The health risk of staying in space is a well-known fact, and the radiation doses to the astronauts must be monitored. The Pille-ISS thermoluminescent dosimeter system is present on the International Space Station (ISS) since 2003. We present an analysis of 60<!--> <!-->000 data points over 19 years from the 90 min automatic measurements and show a 4-day-long segment of 15 min measurements. In the case of the 15 min we show that the mapping of the radiation environment for the orbit of the ISS is possible with the Pille system. From our results the dose rates inside the South Atlantic Anomaly (SAA) are at least 1 magnitude higher than outside.</p><p>From the 90 min data, we select orbits passing through the SAA. A statistical correlation in the SAA between the ISS altitude and monthly mean dose rate is presented with the Spearman correlation value of <span><math><mrow><msub><mrow><mi>ρ</mi></mrow><mrow><mi>S</mi><mi>A</mi><mi>A</mi></mrow></msub><mo>=</mo><mn>0</mn><mo>.</mo><mn>56</mn></mrow></math></span>. The dose rate and the sunspot number show strong inverse Pearson correlation (<span><math><mrow><msup><mrow><mi>R</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>=</mo><mo>−</mo><mn>0</mn><mo>.</mo><mn>90</mn></mrow></math></span>) at a given altitude.</p></div>","PeriodicalId":18029,"journal":{"name":"Life Sciences in Space Research","volume":"41 ","pages":"Pages 52-55"},"PeriodicalIF":2.9000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2214552424000178/pdfft?md5=6f74133eab6768a8b2aeb0b5b4ae5058&pid=1-s2.0-S2214552424000178-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Life Sciences in Space Research","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214552424000178","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
The health risk of staying in space is a well-known fact, and the radiation doses to the astronauts must be monitored. The Pille-ISS thermoluminescent dosimeter system is present on the International Space Station (ISS) since 2003. We present an analysis of 60 000 data points over 19 years from the 90 min automatic measurements and show a 4-day-long segment of 15 min measurements. In the case of the 15 min we show that the mapping of the radiation environment for the orbit of the ISS is possible with the Pille system. From our results the dose rates inside the South Atlantic Anomaly (SAA) are at least 1 magnitude higher than outside.
From the 90 min data, we select orbits passing through the SAA. A statistical correlation in the SAA between the ISS altitude and monthly mean dose rate is presented with the Spearman correlation value of . The dose rate and the sunspot number show strong inverse Pearson correlation () at a given altitude.
期刊介绍:
Life Sciences in Space Research publishes high quality original research and review articles in areas previously covered by the Life Sciences section of COSPAR''s other society journal Advances in Space Research.
Life Sciences in Space Research features an editorial team of top scientists in the space radiation field and guarantees a fast turnaround time from submission to editorial decision.