Detection of optimal working vacation service rate for retrial priority G-queue with immediate Bernoulli feedback

Divya Agarwal, Radhika Agarwal, Shweta Upadhyaya
{"title":"Detection of optimal working vacation service rate for retrial priority G-queue with immediate Bernoulli feedback","authors":"Divya Agarwal,&nbsp;Radhika Agarwal,&nbsp;Shweta Upadhyaya","doi":"10.1016/j.rico.2024.100397","DOIUrl":null,"url":null,"abstract":"<div><p>The idea behind the proposed queueing model is its adequacy in daily existent workplaces like hospitals, banks, and multinational companies where the service quality of computer networks and telecommunication systems are to be improved. The study consists of an <span><math><mrow><msup><mrow><mi>M</mi></mrow><mrow><mi>X</mi></mrow></msup><mo>/</mo><mi>G</mi><mo>/</mo><mn>1</mn></mrow></math></span> retrial G-queue with preemptive priority arrivals where the service provider takes a working vacation and the vacation may get interrupted. The novelty of the proposed model lies as it anticipates state-dependent arrivals wherein unsatisfied clients may come up with immediate Bernoulli feedback. Also, the concept of preemptive priority is included which can be seen in various service systems of day-to-day life. The supplementary variable technique (SVT) is used to unfold the model and obtain the system performance indices and reliability measures. In continuation, the Grey Wolf Optimization (GWO) algorithm is used to obtain the optimal working vacation service rate and retrial rate under two scalar optimization problems where the system works under minimal cost and minimal awaiting time respectively. Lastly, the Pareto optimal solution of a bi-objective problem is also presented.</p></div>","PeriodicalId":34733,"journal":{"name":"Results in Control and Optimization","volume":"14 ","pages":"Article 100397"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2666720724000274/pdfft?md5=d3541b4ad91931771ee8eaaab39dc625&pid=1-s2.0-S2666720724000274-main.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Control and Optimization","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666720724000274","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

Abstract

The idea behind the proposed queueing model is its adequacy in daily existent workplaces like hospitals, banks, and multinational companies where the service quality of computer networks and telecommunication systems are to be improved. The study consists of an MX/G/1 retrial G-queue with preemptive priority arrivals where the service provider takes a working vacation and the vacation may get interrupted. The novelty of the proposed model lies as it anticipates state-dependent arrivals wherein unsatisfied clients may come up with immediate Bernoulli feedback. Also, the concept of preemptive priority is included which can be seen in various service systems of day-to-day life. The supplementary variable technique (SVT) is used to unfold the model and obtain the system performance indices and reliability measures. In continuation, the Grey Wolf Optimization (GWO) algorithm is used to obtain the optimal working vacation service rate and retrial rate under two scalar optimization problems where the system works under minimal cost and minimal awaiting time respectively. Lastly, the Pareto optimal solution of a bi-objective problem is also presented.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
检测具有即时伯努利反馈的重审优先 G 队列的最佳工作假期服务率
所提出的队列模型背后的理念是,该模型适用于医院、银行和跨国公司等日常工作场所,在这些场所中,计算机网络和电信系统的服务质量有待提高。该研究包括一个具有抢先到达优先权的 MX/G/1 重审 G 型队列,在该队列中,服务提供商需要工作休假,而休假可能会被中断。所提模型的新颖之处在于它预测了与状态有关的到达,其中不满意的客户可能会立即提出伯努利反馈。此外,它还包含了抢先优先的概念,这在日常生活中的各种服务系统中都可以看到。补充变量技术(SVT)用于展开模型并获得系统性能指标和可靠性指标。接着,灰狼优化(GWO)算法被用来在两个标量优化问题下获得最佳工作假期服务率和重审率,这两个问题分别是系统在最小成本和最小等待时间下工作。最后,还提出了一个双目标问题的帕累托最优解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Results in Control and Optimization
Results in Control and Optimization Mathematics-Control and Optimization
CiteScore
3.00
自引率
0.00%
发文量
51
审稿时长
91 days
期刊最新文献
Optimal control analysis of a mathematical model for guava nutrients in an integrated farming with cost-effectiveness Observer-based fuzzy T–S control with an estimation error guarantee for MPPT of a photovoltaic battery charger in partial shade conditions Satellite imagery, big data, IoT and deep learning techniques for wheat yield prediction in Morocco Selective opposition based constrained barnacle mating optimization: Theory and applications Comparative exploration on EEG signal filtering using window control methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1