SEPDB: a database of secreted proteins.

IF 4.3 3区 材料科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC ACS Applied Electronic Materials Pub Date : 2024-02-12 DOI:10.1093/database/baae007
Ruiqing Wang, Chao Ren, Tian Gao, Hao Li, Xiaochen Bo, Dahai Zhu, Dan Zhang, Hebing Chen, Yong Zhang
{"title":"SEPDB: a database of secreted proteins.","authors":"Ruiqing Wang, Chao Ren, Tian Gao, Hao Li, Xiaochen Bo, Dahai Zhu, Dan Zhang, Hebing Chen, Yong Zhang","doi":"10.1093/database/baae007","DOIUrl":null,"url":null,"abstract":"<p><p>Detecting changes in the dynamics of secreted proteins in serum has been a challenge for proteomics. Enter secreted protein database (SEPDB), an integrated secretory proteomics database offering human, mouse and rat secretory proteomics datasets collected from serum, exosomes and cell culture media. SEPDB compiles secreted protein information from secreted protein database, UniProt and Human Protein Atlas databases to annotate secreted proteomics data based on protein subcellular localization and disease markers. SEPDB integrates the latest predictive modeling techniques to measure deviations in the distribution of signal peptide structures of secreted proteins, extends signal peptide sequence prediction by excluding transmembrane structural domain proteins and updates the validation analysis pipeline for secreted proteins. To establish tissue-specific profiles, we have also created secreted proteomics datasets associated with different human tissues. In addition, we provide information on heterogeneous receptor network organizational relationships, reflective of the complex functional information inherent in the molecular structures of secreted proteins that serve as ligands. Users can take advantage of the Refreshed Search, Analyze, Browse and Download functions of SEPDB, which is available online at https://sysomics.com/SEPDB/. Database URL:  https://sysomics.com/SEPDB/.</p>","PeriodicalId":3,"journal":{"name":"ACS Applied Electronic Materials","volume":null,"pages":null},"PeriodicalIF":4.3000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10878045/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Electronic Materials","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/database/baae007","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

Detecting changes in the dynamics of secreted proteins in serum has been a challenge for proteomics. Enter secreted protein database (SEPDB), an integrated secretory proteomics database offering human, mouse and rat secretory proteomics datasets collected from serum, exosomes and cell culture media. SEPDB compiles secreted protein information from secreted protein database, UniProt and Human Protein Atlas databases to annotate secreted proteomics data based on protein subcellular localization and disease markers. SEPDB integrates the latest predictive modeling techniques to measure deviations in the distribution of signal peptide structures of secreted proteins, extends signal peptide sequence prediction by excluding transmembrane structural domain proteins and updates the validation analysis pipeline for secreted proteins. To establish tissue-specific profiles, we have also created secreted proteomics datasets associated with different human tissues. In addition, we provide information on heterogeneous receptor network organizational relationships, reflective of the complex functional information inherent in the molecular structures of secreted proteins that serve as ligands. Users can take advantage of the Refreshed Search, Analyze, Browse and Download functions of SEPDB, which is available online at https://sysomics.com/SEPDB/. Database URL:  https://sysomics.com/SEPDB/.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SEPDB:分泌蛋白数据库。
检测血清中分泌蛋白的动态变化一直是蛋白质组学面临的挑战。分泌蛋白数据库(SEPDB)是一个综合性分泌蛋白组学数据库,提供从血清、外泌体和细胞培养基中收集的人类、小鼠和大鼠分泌蛋白组学数据集。SEPDB 编译来自分泌蛋白数据库、UniProt 和人类蛋白质图谱数据库的分泌蛋白信息,根据蛋白质亚细胞定位和疾病标志物对分泌蛋白组学数据进行注释。SEPDB 整合了最新的预测建模技术来测量分泌蛋白信号肽结构分布的偏差,通过排除跨膜结构域蛋白来扩展信号肽序列预测,并更新了分泌蛋白的验证分析管道。为了建立组织特异性档案,我们还创建了与不同人体组织相关的分泌蛋白组学数据集。此外,我们还提供了有关异质性受体网络组织关系的信息,反映了作为配体的分泌蛋白分子结构中固有的复杂功能信息。用户可以利用 SEPDB 的刷新搜索、分析、浏览和下载功能,该数据库的在线网址为 https://sysomics.com/SEPDB/。数据库网址:https://sysomics.com/SEPDB/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.20
自引率
4.30%
发文量
567
期刊最新文献
Hyperbaric oxygen treatment promotes tendon-bone interface healing in a rabbit model of rotator cuff tears. Oxygen-ozone therapy for myocardial ischemic stroke and cardiovascular disorders. Comparative study on the anti-inflammatory and protective effects of different oxygen therapy regimens on lipopolysaccharide-induced acute lung injury in mice. Heme oxygenase/carbon monoxide system and development of the heart. Hyperbaric oxygen for moderate-to-severe traumatic brain injury: outcomes 5-8 years after injury.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1