Assessment of acute and subacute toxicity, pharmacokinetics, and biodistribution of eugenol nanoparticles after oral exposure in Wistar rats.

IF 3.6 3区 医学 Q3 NANOSCIENCE & NANOTECHNOLOGY Nanotoxicology Pub Date : 2024-02-01 Epub Date: 2024-02-13 DOI:10.1080/17435390.2024.2314483
Pramod G Nagaraju, Ashwini S, Pooja J Rao, Poornima Priyadarshini
{"title":"Assessment of acute and subacute toxicity, pharmacokinetics, and biodistribution of eugenol nanoparticles after oral exposure in Wistar rats.","authors":"Pramod G Nagaraju, Ashwini S, Pooja J Rao, Poornima Priyadarshini","doi":"10.1080/17435390.2024.2314483","DOIUrl":null,"url":null,"abstract":"<p><p>The present study aimed to assess the safety, toxicity, biodistribution, and pharmacokinetics of eugenol nanoparticles (EONs) following oral administration in Wistar rat models. In the acute toxicity study, the rats were given a fixed dose of 50, 300, and 2000 mg/kg body weight per group orally and screened for 2 weeks after administration. In the subacute study, three different doses (500, 1000, and 2000 mg/kg BW) of EON were administered for 28 days. The results indicated no significant differences in food and water consumption, bodyweight change, hematological and biochemical parameters, relative organ weights, gross findings, or histopathology compared to the control. Additionally, no significant changes were observed in the expression profiles of inflammatory cytokines such as IL-1, IL-6, and TNFα in the plasma, confirming the absence of systemic inflammation. Biodistribution analysis revealed rapid absorption of eugenol and improved bioavailability due to gradual and sustained release, leading to a maximum eugenol concentration of 15.05 μg/mL (Cmax) at approximately 8 h (Tmax) in the blood plasma. Thus, the study provides valuable insights into the utilization of EON for enhancing the stability, solubility, and sustained release of eugenol and highlights its promising safety profile <i>in vivo.</i></p>","PeriodicalId":18899,"journal":{"name":"Nanotoxicology","volume":" ","pages":"87-105"},"PeriodicalIF":3.6000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanotoxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17435390.2024.2314483","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/2/13 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"NANOSCIENCE & NANOTECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The present study aimed to assess the safety, toxicity, biodistribution, and pharmacokinetics of eugenol nanoparticles (EONs) following oral administration in Wistar rat models. In the acute toxicity study, the rats were given a fixed dose of 50, 300, and 2000 mg/kg body weight per group orally and screened for 2 weeks after administration. In the subacute study, three different doses (500, 1000, and 2000 mg/kg BW) of EON were administered for 28 days. The results indicated no significant differences in food and water consumption, bodyweight change, hematological and biochemical parameters, relative organ weights, gross findings, or histopathology compared to the control. Additionally, no significant changes were observed in the expression profiles of inflammatory cytokines such as IL-1, IL-6, and TNFα in the plasma, confirming the absence of systemic inflammation. Biodistribution analysis revealed rapid absorption of eugenol and improved bioavailability due to gradual and sustained release, leading to a maximum eugenol concentration of 15.05 μg/mL (Cmax) at approximately 8 h (Tmax) in the blood plasma. Thus, the study provides valuable insights into the utilization of EON for enhancing the stability, solubility, and sustained release of eugenol and highlights its promising safety profile in vivo.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估 Wistar 大鼠口服丁香酚纳米颗粒后的急性和亚急性毒性、药代动力学和生物分布。
本研究旨在评估丁香酚纳米颗粒(EONs)在Wistar大鼠模型中口服后的安全性、毒性、生物分布和药代动力学。在急性毒性研究中,每组大鼠口服 50、300 和 2000 毫克/千克体重的固定剂量,并在给药后 2 周进行筛查。在亚急性毒性研究中,给大鼠服用三种不同剂量(500、1000 和 2000 毫克/千克体重)的壬二酮,为期 28 天。结果表明,与对照组相比,EON在食物和水的消耗量、体重变化、血液学和生化参数、相对器官重量、大体检查结果或组织病理学方面均无明显差异。此外,血浆中 IL-1、IL-6 和 TNFα 等炎症细胞因子的表达谱也没有发生明显变化,这证实没有全身性炎症。生物分布分析表明丁香酚吸收迅速,并且由于渐进和持续释放提高了生物利用度,在血浆中约 8 小时(Tmax)达到 15.05 μg/mL 的最大丁香酚浓度(Cmax)。因此,这项研究为利用 EON 增强丁香酚的稳定性、溶解性和持续释放提供了宝贵的见解,并突出了其在体内的安全性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nanotoxicology
Nanotoxicology 医学-毒理学
CiteScore
10.10
自引率
4.00%
发文量
45
审稿时长
3.5 months
期刊介绍: Nanotoxicology invites contributions addressing research relating to the potential for human and environmental exposure, hazard and risk associated with the use and development of nano-structured materials. In this context, the term nano-structured materials has a broad definition, including ‘materials with at least one dimension in the nanometer size range’. These nanomaterials range from nanoparticles and nanomedicines, to nano-surfaces of larger materials and composite materials. The range of nanomaterials in use and under development is extremely diverse, so this journal includes a range of materials generated for purposeful delivery into the body (food, medicines, diagnostics and prosthetics), to consumer products (e.g. paints, cosmetics, electronics and clothing), and particles designed for environmental applications (e.g. remediation). It is the nano-size range if these materials which unifies them and defines the scope of Nanotoxicology . While the term ‘toxicology’ indicates risk, the journal Nanotoxicology also aims to encompass studies that enhance safety during the production, use and disposal of nanomaterials. Well-controlled studies demonstrating a lack of exposure, hazard or risk associated with nanomaterials, or studies aiming to improve biocompatibility are welcomed and encouraged, as such studies will lead to an advancement of nanotechnology. Furthermore, many nanoparticles are developed with the intention to improve human health (e.g. antimicrobial agents), and again, such articles are encouraged. In order to promote quality, Nanotoxicology will prioritise publications that have demonstrated characterisation of the nanomaterials investigated.
期刊最新文献
Environmental toxicity assessment of engineered nanoparticles manifest histo-hemato alterations to fresh water fish. In vivo assessment of topically applied silver nanoparticles on entire cornea: comprehensive FTIR study. Intraperitoneal hepatorenal toxicity of zinc oxide and nickel oxide nanoparticles in rats: a systematic review. Role of physicochemical properties in silica nanoparticle-mediated immunostimulation. Carbon quantum dots in breast cancer modulate cellular migration via cytoskeletal and nuclear structure.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1