Liquid crystalline inverted lipid phases encapsulating siRNA enhance lipid nanoparticle mediated transfection.

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2024-02-12 DOI:10.1038/s41467-024-45666-5
Roy Pattipeiluhu, Ye Zeng, Marco M R M Hendrix, Ilja K Voets, Alexander Kros, Thomas H Sharp
{"title":"Liquid crystalline inverted lipid phases encapsulating siRNA enhance lipid nanoparticle mediated transfection.","authors":"Roy Pattipeiluhu, Ye Zeng, Marco M R M Hendrix, Ilja K Voets, Alexander Kros, Thomas H Sharp","doi":"10.1038/s41467-024-45666-5","DOIUrl":null,"url":null,"abstract":"<p><p>Efficient cytosolic delivery of RNA molecules remains a formidable barrier for RNA therapeutic strategies. Lipid nanoparticles (LNPs) serve as state-of-the-art carriers that can deliver RNA molecules intracellularly, as exemplified by the recent implementation of several vaccines against SARS-CoV-2. Using a bottom-up rational design approach, we assemble LNPs that contain programmable lipid phases encapsulating small interfering RNA (siRNA). A combination of cryogenic transmission electron microscopy, cryogenic electron tomography and small-angle X-ray scattering reveals that we can form inverse hexagonal structures, which are present in a liquid crystalline nature within the LNP core. Comparison with lamellar LNPs reveals that the presence of inverse hexagonal phases enhances the intracellular silencing efficiency over lamellar structures. We then demonstrate that lamellar LNPs exhibit an in situ transition from a lamellar to inverse hexagonal phase upon interaction with anionic membranes, whereas LNPs containing pre-programmed liquid crystalline hexagonal phases bypass this transition for a more efficient one-step delivery mechanism, explaining the increased silencing effect. This rational design of LNPs with defined lipid structures aids in the understanding of the nano-bio interface and adds substantial value for LNP design, optimization and use.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":"1303"},"PeriodicalIF":14.7000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10861598/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-024-45666-5","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient cytosolic delivery of RNA molecules remains a formidable barrier for RNA therapeutic strategies. Lipid nanoparticles (LNPs) serve as state-of-the-art carriers that can deliver RNA molecules intracellularly, as exemplified by the recent implementation of several vaccines against SARS-CoV-2. Using a bottom-up rational design approach, we assemble LNPs that contain programmable lipid phases encapsulating small interfering RNA (siRNA). A combination of cryogenic transmission electron microscopy, cryogenic electron tomography and small-angle X-ray scattering reveals that we can form inverse hexagonal structures, which are present in a liquid crystalline nature within the LNP core. Comparison with lamellar LNPs reveals that the presence of inverse hexagonal phases enhances the intracellular silencing efficiency over lamellar structures. We then demonstrate that lamellar LNPs exhibit an in situ transition from a lamellar to inverse hexagonal phase upon interaction with anionic membranes, whereas LNPs containing pre-programmed liquid crystalline hexagonal phases bypass this transition for a more efficient one-step delivery mechanism, explaining the increased silencing effect. This rational design of LNPs with defined lipid structures aids in the understanding of the nano-bio interface and adds substantial value for LNP design, optimization and use.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
包裹 siRNA 的液晶倒置脂相可增强脂质纳米粒子介导的转染。
RNA 分子在细胞内的高效传递仍然是 RNA 治疗策略的一个巨大障碍。脂质纳米颗粒(LNPs)是最先进的载体,可以在细胞内递送 RNA 分子,最近几种抗 SARS-CoV-2 疫苗的应用就是例证。利用自下而上的合理设计方法,我们组装出了含有可编程脂质相的 LNPs,其中封装了小干扰 RNA (siRNA)。结合低温透射电子显微镜、低温电子断层扫描和小角 X 射线散射,我们发现可以在 LNP 核心内形成液晶性质的反六边形结构。与片状 LNPs 比较发现,与片状结构相比,反六边形相的存在提高了细胞内的沉默效率。我们随后证明,片状 LNPs 在与阴离子膜相互作用时会出现从片状相到反六方相的原位转变,而含有预编程液晶六方相的 LNPs 则绕过了这一转变,从而实现了更高效的一步递送机制,这也是沉默效果增强的原因所在。这种具有确定脂质结构的 LNPs 的合理设计有助于理解纳米生物界面,并为 LNP 的设计、优化和使用增添了巨大价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Author Correction: Estimating countries’ additional carbon accountability for closing the mitigation gap based on past and future emissions Immune modules to guide diagnosis and personalized treatment of inflammatory skin diseases On the equilibrium limit of liquid stability in pressurized aqueous systems Design of pseudosymmetric protein hetero-oligomers Collagen signaling and matrix stiffness regulate multipotency in glandular epithelial stem cells in mice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1